Skip to content
Snippets Groups Projects
device_pm.c 29.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * drivers/acpi/device_pm.c - ACPI device power management routines.
     *
     * Copyright (C) 2012, Intel Corp.
     * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
     *
     * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     *
     *  This program is free software; you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License version 2 as published
     *  by the Free Software Foundation.
     *
     *  This program is distributed in the hope that it will be useful, but
     *  WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     *  General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License along
     *  with this program; if not, write to the Free Software Foundation, Inc.,
     *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
     *
     * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     */
    
    
    #include "internal.h"
    
    #define _COMPONENT	ACPI_POWER_COMPONENT
    ACPI_MODULE_NAME("device_pm");
    
    /**
     * acpi_power_state_string - String representation of ACPI device power state.
     * @state: ACPI device power state to return the string representation of.
     */
    const char *acpi_power_state_string(int state)
    {
    	switch (state) {
    	case ACPI_STATE_D0:
    		return "D0";
    	case ACPI_STATE_D1:
    		return "D1";
    	case ACPI_STATE_D2:
    		return "D2";
    	case ACPI_STATE_D3_HOT:
    		return "D3hot";
    	case ACPI_STATE_D3_COLD:
    
    	default:
    		return "(unknown)";
    	}
    }
    
    /**
     * acpi_device_get_power - Get power state of an ACPI device.
     * @device: Device to get the power state of.
     * @state: Place to store the power state of the device.
     *
     * This function does not update the device's power.state field, but it may
     * update its parent's power.state field (when the parent's power state is
     * unknown and the device's power state turns out to be D0).
     */
    int acpi_device_get_power(struct acpi_device *device, int *state)
    {
    	int result = ACPI_STATE_UNKNOWN;
    
    	if (!device || !state)
    		return -EINVAL;
    
    	if (!device->flags.power_manageable) {
    		/* TBD: Non-recursive algorithm for walking up hierarchy. */
    		*state = device->parent ?
    			device->parent->power.state : ACPI_STATE_D0;
    		goto out;
    	}
    
    	/*
    
    	 * Get the device's power state from power resources settings and _PSC,
    	 * if available.
    
    	if (device->power.flags.power_resources) {
    		int error = acpi_power_get_inferred_state(device, &result);
    		if (error)
    			return error;
    	}
    
    	if (device->power.flags.explicit_get) {
    
    		acpi_handle handle = device->handle;
    
    		acpi_status status;
    
    		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
    
    		if (ACPI_FAILURE(status))
    			return -ENODEV;
    
    
    		/*
    		 * The power resources settings may indicate a power state
    		 * shallower than the actual power state of the device.
    		 *
    		 * Moreover, on systems predating ACPI 4.0, if the device
    		 * doesn't depend on any power resources and _PSC returns 3,
    		 * that means "power off".  We need to maintain compatibility
    		 * with those systems.
    		 */
    		if (psc > result && psc < ACPI_STATE_D3_COLD)
    			result = psc;
    		else if (result == ACPI_STATE_UNKNOWN)
    			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc;
    
    	}
    
    	/*
    	 * If we were unsure about the device parent's power state up to this
    	 * point, the fact that the device is in D0 implies that the parent has
    
    	 * to be in D0 too, except if ignore_parent is set.
    
    	if (!device->power.flags.ignore_parent && device->parent
    	    && device->parent->power.state == ACPI_STATE_UNKNOWN
    
    	    && result == ACPI_STATE_D0)
    		device->parent->power.state = ACPI_STATE_D0;
    
    	*state = result;
    
     out:
    	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
    			  device->pnp.bus_id, acpi_power_state_string(*state)));
    
    	return 0;
    }
    
    
    static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
    {
    	if (adev->power.states[state].flags.explicit_set) {
    		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
    		acpi_status status;
    
    		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
    		if (ACPI_FAILURE(status))
    			return -ENODEV;
    	}
    	return 0;
    }
    
    
    /**
     * acpi_device_set_power - Set power state of an ACPI device.
     * @device: Device to set the power state of.
     * @state: New power state to set.
     *
     * Callers must ensure that the device is power manageable before using this
     * function.
     */
    int acpi_device_set_power(struct acpi_device *device, int state)
    {
    	int result = 0;
    	bool cut_power = false;
    
    
    	if (!device || !device->flags.power_manageable
    	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
    
    		return -EINVAL;
    
    	/* Make sure this is a valid target state */
    
    	if (state == device->power.state) {
    
    		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
    				  device->pnp.bus_id,
    
    				  acpi_power_state_string(state)));
    		return 0;
    	}
    
    	if (!device->power.states[state].flags.valid) {
    
    		dev_warn(&device->dev, "Power state %s not supported\n",
    			 acpi_power_state_string(state));
    
    	if (!device->power.flags.ignore_parent &&
    	    device->parent && (state < device->parent->power.state)) {
    
    			 "Cannot transition to power state %s for parent in %s\n",
    			 acpi_power_state_string(state),
    			 acpi_power_state_string(device->parent->power.state));
    
    		return -ENODEV;
    	}
    
    	/* For D3cold we should first transition into D3hot. */
    	if (state == ACPI_STATE_D3_COLD
    	    && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) {
    		state = ACPI_STATE_D3_HOT;
    		cut_power = true;
    	}
    
    
    	if (state < device->power.state && state != ACPI_STATE_D0
    	    && device->power.state >= ACPI_STATE_D3_HOT) {
    
    		dev_warn(&device->dev,
    			 "Cannot transition to non-D0 state from D3\n");
    
    	 * In accordance with the ACPI specification first apply power (via
    	 * power resources) and then evalute _PSx.
    
    	if (device->power.flags.power_resources) {
    		result = acpi_power_transition(device, state);
    
    	result = acpi_dev_pm_explicit_set(device, state);
    	if (result)
    		goto end;
    
    	if (cut_power) {
    		device->power.state = state;
    		state = ACPI_STATE_D3_COLD;
    		result = acpi_power_transition(device, state);
    	}
    
    		dev_warn(&device->dev, "Failed to change power state to %s\n",
    			 acpi_power_state_string(state));
    
    		device->power.state = state;
    		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
    				  "Device [%s] transitioned to %s\n",
    				  device->pnp.bus_id,
    				  acpi_power_state_string(state)));
    	}
    
    	return result;
    }
    EXPORT_SYMBOL(acpi_device_set_power);
    
    int acpi_bus_set_power(acpi_handle handle, int state)
    {
    	struct acpi_device *device;
    	int result;
    
    	result = acpi_bus_get_device(handle, &device);
    	if (result)
    		return result;
    
    	return acpi_device_set_power(device, state);
    }
    EXPORT_SYMBOL(acpi_bus_set_power);
    
    int acpi_bus_init_power(struct acpi_device *device)
    {
    	int state;
    	int result;
    
    	if (!device)
    		return -EINVAL;
    
    	device->power.state = ACPI_STATE_UNKNOWN;
    
    	if (!acpi_device_is_present(device))
    		return 0;
    
    
    	result = acpi_device_get_power(device, &state);
    	if (result)
    		return result;
    
    
    	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
    
    		result = acpi_power_on_resources(device, state);
    
    		if (result)
    			return result;
    
    		result = acpi_dev_pm_explicit_set(device, state);
    		if (result)
    			return result;
    
    	} else if (state == ACPI_STATE_UNKNOWN) {
    
    		/*
    		 * No power resources and missing _PSC?  Cross fingers and make
    		 * it D0 in hope that this is what the BIOS put the device into.
    		 * [We tried to force D0 here by executing _PS0, but that broke
    		 * Toshiba P870-303 in a nasty way.]
    		 */
    
    	}
    	device->power.state = state;
    	return 0;
    
    /**
     * acpi_device_fix_up_power - Force device with missing _PSC into D0.
     * @device: Device object whose power state is to be fixed up.
     *
     * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
     * are assumed to be put into D0 by the BIOS.  However, in some cases that may
     * not be the case and this function should be used then.
     */
    int acpi_device_fix_up_power(struct acpi_device *device)
    {
    	int ret = 0;
    
    	if (!device->power.flags.power_resources
    	    && !device->power.flags.explicit_get
    	    && device->power.state == ACPI_STATE_D0)
    		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
    
    	return ret;
    }
    
    
    int acpi_device_update_power(struct acpi_device *device, int *state_p)
    
    	if (device->power.state == ACPI_STATE_UNKNOWN) {
    		result = acpi_bus_init_power(device);
    		if (!result && state_p)
    			*state_p = device->power.state;
    
    
    
    	result = acpi_device_get_power(device, &state);
    	if (result)
    		return result;
    
    
    	if (state == ACPI_STATE_UNKNOWN) {
    
    		result = acpi_device_set_power(device, state);
    		if (result)
    			return result;
    	} else {
    		if (device->power.flags.power_resources) {
    			/*
    			 * We don't need to really switch the state, bu we need
    			 * to update the power resources' reference counters.
    			 */
    			result = acpi_power_transition(device, state);
    			if (result)
    				return result;
    		}
    		device->power.state = state;
    	}
    	if (state_p)
    
    
    int acpi_bus_update_power(acpi_handle handle, int *state_p)
    {
    	struct acpi_device *device;
    	int result;
    
    	result = acpi_bus_get_device(handle, &device);
    	return result ? result : acpi_device_update_power(device, state_p);
    }
    
    EXPORT_SYMBOL_GPL(acpi_bus_update_power);
    
    bool acpi_bus_power_manageable(acpi_handle handle)
    {
    	struct acpi_device *device;
    	int result;
    
    	result = acpi_bus_get_device(handle, &device);
    	return result ? false : device->flags.power_manageable;
    }
    EXPORT_SYMBOL(acpi_bus_power_manageable);
    
    
    #ifdef CONFIG_PM
    static DEFINE_MUTEX(acpi_pm_notifier_lock);
    
    /**
     * acpi_add_pm_notifier - Register PM notifier for given ACPI device.
     * @adev: ACPI device to add the notifier for.
     * @context: Context information to pass to the notifier routine.
     *
     * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
     * PM wakeup events.  For example, wakeup events may be generated for bridges
     * if one of the devices below the bridge is signaling wakeup, even if the
     * bridge itself doesn't have a wakeup GPE associated with it.
     */
    acpi_status acpi_add_pm_notifier(struct acpi_device *adev,
    				 acpi_notify_handler handler, void *context)
    {
    	acpi_status status = AE_ALREADY_EXISTS;
    
    	mutex_lock(&acpi_pm_notifier_lock);
    
    	if (adev->wakeup.flags.notifier_present)
    		goto out;
    
    	status = acpi_install_notify_handler(adev->handle,
    					     ACPI_SYSTEM_NOTIFY,
    					     handler, context);
    	if (ACPI_FAILURE(status))
    		goto out;
    
    	adev->wakeup.flags.notifier_present = true;
    
     out:
    	mutex_unlock(&acpi_pm_notifier_lock);
    	return status;
    }
    
    /**
     * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
     * @adev: ACPI device to remove the notifier from.
     */
    acpi_status acpi_remove_pm_notifier(struct acpi_device *adev,
    				    acpi_notify_handler handler)
    {
    	acpi_status status = AE_BAD_PARAMETER;
    
    	mutex_lock(&acpi_pm_notifier_lock);
    
    	if (!adev->wakeup.flags.notifier_present)
    		goto out;
    
    	status = acpi_remove_notify_handler(adev->handle,
    					    ACPI_SYSTEM_NOTIFY,
    					    handler);
    	if (ACPI_FAILURE(status))
    		goto out;
    
    	adev->wakeup.flags.notifier_present = false;
    
     out:
    	mutex_unlock(&acpi_pm_notifier_lock);
    	return status;
    }
    
    
    bool acpi_bus_can_wakeup(acpi_handle handle)
    {
    	struct acpi_device *device;
    	int result;
    
    	result = acpi_bus_get_device(handle, &device);
    	return result ? false : device->wakeup.flags.valid;
    }
    EXPORT_SYMBOL(acpi_bus_can_wakeup);
    
    
     * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
    
     * @dev: Device whose preferred target power state to return.
     * @adev: ACPI device node corresponding to @dev.
     * @target_state: System state to match the resultant device state.
    
     * @d_min_p: Location to store the highest power state available to the device.
     * @d_max_p: Location to store the lowest power state available to the device.
    
     * Find the lowest power (highest number) and highest power (lowest number) ACPI
     * device power states that the device can be in while the system is in the
     * state represented by @target_state.  Store the integer numbers representing
     * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
     * respectively.
    
     *
     * Callers must ensure that @dev and @adev are valid pointers and that @adev
     * actually corresponds to @dev before using this function.
    
     *
     * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
     * returns a value that doesn't make sense.  The memory locations pointed to by
     * @d_max_p and @d_min_p are only modified on success.
    
    static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
    
    				 u32 target_state, int *d_min_p, int *d_max_p)
    
    	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
    	acpi_handle handle = adev->handle;
    	unsigned long long ret;
    	int d_min, d_max;
    
    	 * If the system state is S0, the lowest power state the device can be
    	 * in is D3cold, unless the device has _S0W and is supposed to signal
    	 * wakeup, in which case the return value of _S0W has to be used as the
    	 * lowest power state available to the device.
    
    
    	/*
    	 * If present, _SxD methods return the minimum D-state (highest power
    	 * state) we can use for the corresponding S-states.  Otherwise, the
    	 * minimum D-state is D0 (ACPI 3.x).
    	 */
    	if (target_state > ACPI_STATE_S0) {
    
    		/*
    		 * We rely on acpi_evaluate_integer() not clobbering the integer
    		 * provided if AE_NOT_FOUND is returned.
    		 */
    		ret = d_min;
    		status = acpi_evaluate_integer(handle, method, NULL, &ret);
    		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
    		    || ret > ACPI_STATE_D3_COLD)
    			return -ENODATA;
    
    		/*
    		 * We need to handle legacy systems where D3hot and D3cold are
    		 * the same and 3 is returned in both cases, so fall back to
    		 * D3cold if D3hot is not a valid state.
    		 */
    		if (!adev->power.states[ret].flags.valid) {
    			if (ret == ACPI_STATE_D3_HOT)
    				ret = ACPI_STATE_D3_COLD;
    			else
    				return -ENODATA;
    		}
    		d_min = ret;
    
    		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
    			&& adev->wakeup.sleep_state >= target_state;
    	} else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
    			PM_QOS_FLAGS_NONE) {
    		wakeup = adev->wakeup.flags.valid;
    	}
    
    	/*
    	 * If _PRW says we can wake up the system from the target sleep state,
    	 * the D-state returned by _SxD is sufficient for that (we assume a
    	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
    	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
    	 * can wake the system.  _S0W may be valid, too.
    	 */
    	if (wakeup) {
    
    		method[3] = 'W';
    		status = acpi_evaluate_integer(handle, method, NULL, &ret);
    		if (status == AE_NOT_FOUND) {
    			if (target_state > ACPI_STATE_S0)
    
    		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
    			/* Fall back to D3cold if ret is not a valid state. */
    			if (!adev->power.states[ret].flags.valid)
    				ret = ACPI_STATE_D3_COLD;
    
    			d_max = ret > d_min ? ret : d_min;
    		} else {
    			return -ENODATA;
    
    /**
     * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
     * @dev: Device whose preferred target power state to return.
     * @d_min_p: Location to store the upper limit of the allowed states range.
     * @d_max_in: Deepest low-power state to take into consideration.
     * Return value: Preferred power state of the device on success, -ENODEV
    
     * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
     * incorrect, or -ENODATA on ACPI method failure.
    
     *
     * The caller must ensure that @dev is valid before using this function.
     */
    int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
    {
    
    	acpi_handle handle = ACPI_HANDLE(dev);
    
    
    	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
    		return -EINVAL;
    
    	if (d_max_in > ACPI_STATE_D3_HOT) {
    		enum pm_qos_flags_status stat;
    
    		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
    		if (stat == PM_QOS_FLAGS_ALL)
    			d_max_in = ACPI_STATE_D3_HOT;
    	}
    
    	if (!handle || acpi_bus_get_device(handle, &adev)) {
    
    		dev_dbg(dev, "ACPI handle without context in %s!\n", __func__);
    		return -ENODEV;
    	}
    
    
    	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
    
    		return -EINVAL;
    
    	if (d_max > d_max_in) {
    
    		for (d_max = d_max_in; d_max > d_min; d_max--) {
    
    			if (adev->power.states[d_max].flags.valid)
    				break;
    		}
    	}
    
    }
    EXPORT_SYMBOL(acpi_pm_device_sleep_state);
    
    
    /**
     * acpi_wakeup_device - Wakeup notification handler for ACPI devices.
     * @handle: ACPI handle of the device the notification is for.
     * @event: Type of the signaled event.
     * @context: Device corresponding to @handle.
     */
    static void acpi_wakeup_device(acpi_handle handle, u32 event, void *context)
    {
    	struct device *dev = context;
    
    	if (event == ACPI_NOTIFY_DEVICE_WAKE && dev) {
    		pm_wakeup_event(dev, 0);
    		pm_runtime_resume(dev);
    	}
    }
    
    
     * __acpi_device_run_wake - Enable/disable runtime remote wakeup for device.
     * @adev: ACPI device to enable/disable the remote wakeup for.
    
     * @enable: Whether to enable or disable the wakeup functionality.
     *
    
     * Enable/disable the GPE associated with @adev so that it can generate
     * wakeup signals for the device in response to external (remote) events and
     * enable/disable device wakeup power.
     *
     * Callers must ensure that @adev is a valid ACPI device node before executing
     * this function.
     */
    int __acpi_device_run_wake(struct acpi_device *adev, bool enable)
    {
    	struct acpi_device_wakeup *wakeup = &adev->wakeup;
    
    	if (enable) {
    		acpi_status res;
    		int error;
    
    		error = acpi_enable_wakeup_device_power(adev, ACPI_STATE_S0);
    		if (error)
    			return error;
    
    		res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
    		if (ACPI_FAILURE(res)) {
    			acpi_disable_wakeup_device_power(adev);
    			return -EIO;
    		}
    	} else {
    		acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
    		acpi_disable_wakeup_device_power(adev);
    	}
    	return 0;
    }
    
    /**
     * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
     * @dev: Device to enable/disable the platform to wake up.
     * @enable: Whether to enable or disable the wakeup functionality.
    
     */
    int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
    {
    
    	struct acpi_device *adev;
    
    	acpi_handle handle;
    
    	if (!device_run_wake(phys_dev))
    		return -EINVAL;
    
    
    	handle = ACPI_HANDLE(phys_dev);
    
    	if (!handle || acpi_bus_get_device(handle, &adev)) {
    
    		dev_dbg(phys_dev, "ACPI handle without context in %s!\n",
    
    	return __acpi_device_run_wake(adev, enable);
    
    }
    EXPORT_SYMBOL(acpi_pm_device_run_wake);
    
    #else
    static inline void acpi_wakeup_device(acpi_handle handle, u32 event,
    				      void *context) {}
    
    #ifdef CONFIG_PM_SLEEP
    
    /**
     * __acpi_device_sleep_wake - Enable or disable device to wake up the system.
     * @dev: Device to enable/desible to wake up the system.
     * @target_state: System state the device is supposed to wake up from.
     * @enable: Whether to enable or disable @dev to wake up the system.
     */
    int __acpi_device_sleep_wake(struct acpi_device *adev, u32 target_state,
    			     bool enable)
    {
    	return enable ?
    		acpi_enable_wakeup_device_power(adev, target_state) :
    		acpi_disable_wakeup_device_power(adev);
    }
    
    
    /**
     * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
     * @dev: Device to enable/desible to wake up the system from sleep states.
     * @enable: Whether to enable or disable @dev to wake up the system.
     */
    int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
    {
    	acpi_handle handle;
    	struct acpi_device *adev;
    	int error;
    
    	if (!device_can_wakeup(dev))
    		return -EINVAL;
    
    
    	handle = ACPI_HANDLE(dev);
    
    	if (!handle || acpi_bus_get_device(handle, &adev)) {
    
    		dev_dbg(dev, "ACPI handle without context in %s!\n", __func__);
    		return -ENODEV;
    	}
    
    	error = __acpi_device_sleep_wake(adev, acpi_target_system_state(),
    					 enable);
    	if (!error)
    		dev_info(dev, "System wakeup %s by ACPI\n",
    				enable ? "enabled" : "disabled");
    
    	return error;
    }
    
    #endif /* CONFIG_PM_SLEEP */
    
    
    /**
     * acpi_dev_pm_get_node - Get ACPI device node for the given physical device.
     * @dev: Device to get the ACPI node for.
     */
    
    struct acpi_device *acpi_dev_pm_get_node(struct device *dev)
    
    	acpi_handle handle = ACPI_HANDLE(dev);
    
    	return handle && !acpi_bus_get_device(handle, &adev) ? adev : NULL;
    
    }
    
    /**
     * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
     * @dev: Device to put into a low-power state.
     * @adev: ACPI device node corresponding to @dev.
     * @system_state: System state to choose the device state for.
     */
    static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
    				 u32 system_state)
    {
    
    
    	if (!acpi_device_power_manageable(adev))
    		return 0;
    
    
    	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
    	return ret ? ret : acpi_device_set_power(adev, state);
    
    }
    
    /**
     * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
     * @adev: ACPI device node to put into the full-power state.
     */
    static int acpi_dev_pm_full_power(struct acpi_device *adev)
    {
    	return acpi_device_power_manageable(adev) ?
    		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
    }
    
    #ifdef CONFIG_PM_RUNTIME
    /**
     * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
     * @dev: Device to put into a low-power state.
     *
     * Put the given device into a runtime low-power state using the standard ACPI
     * mechanism.  Set up remote wakeup if desired, choose the state to put the
     * device into (this checks if remote wakeup is expected to work too), and set
     * the power state of the device.
     */
    int acpi_dev_runtime_suspend(struct device *dev)
    {
    	struct acpi_device *adev = acpi_dev_pm_get_node(dev);
    	bool remote_wakeup;
    	int error;
    
    	if (!adev)
    		return 0;
    
    	remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
    				PM_QOS_FLAGS_NONE;
    	error = __acpi_device_run_wake(adev, remote_wakeup);
    	if (remote_wakeup && error)
    		return -EAGAIN;
    
    	error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
    	if (error)
    		__acpi_device_run_wake(adev, false);
    
    	return error;
    }
    EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);
    
    /**
     * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
     * @dev: Device to put into the full-power state.
     *
     * Put the given device into the full-power state using the standard ACPI
     * mechanism at run time.  Set the power state of the device to ACPI D0 and
     * disable remote wakeup.
     */
    int acpi_dev_runtime_resume(struct device *dev)
    {
    	struct acpi_device *adev = acpi_dev_pm_get_node(dev);
    	int error;
    
    	if (!adev)
    		return 0;
    
    	error = acpi_dev_pm_full_power(adev);
    	__acpi_device_run_wake(adev, false);
    	return error;
    }
    EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);
    
    /**
     * acpi_subsys_runtime_suspend - Suspend device using ACPI.
     * @dev: Device to suspend.
     *
     * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
     * it into a runtime low-power state.
     */
    int acpi_subsys_runtime_suspend(struct device *dev)
    {
    	int ret = pm_generic_runtime_suspend(dev);
    	return ret ? ret : acpi_dev_runtime_suspend(dev);
    }
    EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
    
    /**
     * acpi_subsys_runtime_resume - Resume device using ACPI.
     * @dev: Device to Resume.
     *
     * Use ACPI to put the given device into the full-power state and carry out the
     * generic runtime resume procedure for it.
     */
    int acpi_subsys_runtime_resume(struct device *dev)
    {
    	int ret = acpi_dev_runtime_resume(dev);
    	return ret ? ret : pm_generic_runtime_resume(dev);
    }
    EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
    #endif /* CONFIG_PM_RUNTIME */
    
    #ifdef CONFIG_PM_SLEEP
    /**
     * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
     * @dev: Device to put into a low-power state.
     *
     * Put the given device into a low-power state during system transition to a
     * sleep state using the standard ACPI mechanism.  Set up system wakeup if
     * desired, choose the state to put the device into (this checks if system
     * wakeup is expected to work too), and set the power state of the device.
     */
    int acpi_dev_suspend_late(struct device *dev)
    {
    	struct acpi_device *adev = acpi_dev_pm_get_node(dev);
    	u32 target_state;
    	bool wakeup;
    	int error;
    
    	if (!adev)
    		return 0;
    
    	target_state = acpi_target_system_state();
    	wakeup = device_may_wakeup(dev);
    	error = __acpi_device_sleep_wake(adev, target_state, wakeup);
    	if (wakeup && error)
    		return error;
    
    	error = acpi_dev_pm_low_power(dev, adev, target_state);
    	if (error)
    		__acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false);
    
    	return error;
    }
    EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);
    
    /**
     * acpi_dev_resume_early - Put device into the full-power state using ACPI.
     * @dev: Device to put into the full-power state.
     *
     * Put the given device into the full-power state using the standard ACPI
     * mechanism during system transition to the working state.  Set the power
     * state of the device to ACPI D0 and disable remote wakeup.
     */
    int acpi_dev_resume_early(struct device *dev)
    {
    	struct acpi_device *adev = acpi_dev_pm_get_node(dev);
    	int error;
    
    	if (!adev)
    		return 0;
    
    	error = acpi_dev_pm_full_power(adev);
    	__acpi_device_sleep_wake(adev, ACPI_STATE_UNKNOWN, false);
    	return error;
    }
    EXPORT_SYMBOL_GPL(acpi_dev_resume_early);
    
    /**
     * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
     * @dev: Device to prepare.
     */
    int acpi_subsys_prepare(struct device *dev)
    {
    	/*
    	 * Follow PCI and resume devices suspended at run time before running
    	 * their system suspend callbacks.
    	 */
    	pm_runtime_resume(dev);
    	return pm_generic_prepare(dev);
    }
    EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
    
    /**
     * acpi_subsys_suspend_late - Suspend device using ACPI.
     * @dev: Device to suspend.
     *
     * Carry out the generic late suspend procedure for @dev and use ACPI to put
     * it into a low-power state during system transition into a sleep state.
     */
    int acpi_subsys_suspend_late(struct device *dev)
    {
    	int ret = pm_generic_suspend_late(dev);
    	return ret ? ret : acpi_dev_suspend_late(dev);
    }
    EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
    
    /**
     * acpi_subsys_resume_early - Resume device using ACPI.
     * @dev: Device to Resume.
     *
     * Use ACPI to put the given device into the full-power state and carry out the
     * generic early resume procedure for it during system transition into the
     * working state.
     */
    int acpi_subsys_resume_early(struct device *dev)
    {
    	int ret = acpi_dev_resume_early(dev);
    	return ret ? ret : pm_generic_resume_early(dev);
    }
    EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
    #endif /* CONFIG_PM_SLEEP */
    
    static struct dev_pm_domain acpi_general_pm_domain = {
    	.ops = {
    #ifdef CONFIG_PM_RUNTIME
    		.runtime_suspend = acpi_subsys_runtime_suspend,
    		.runtime_resume = acpi_subsys_runtime_resume,
    #endif
    #ifdef CONFIG_PM_SLEEP
    		.prepare = acpi_subsys_prepare,
    		.suspend_late = acpi_subsys_suspend_late,
    		.resume_early = acpi_subsys_resume_early,
    		.poweroff_late = acpi_subsys_suspend_late,
    		.restore_early = acpi_subsys_resume_early,
    #endif
    	},
    };
    
    /**
     * acpi_dev_pm_attach - Prepare device for ACPI power management.
     * @dev: Device to prepare.
    
     * @power_on: Whether or not to power on the device.
    
     *
     * If @dev has a valid ACPI handle that has a valid struct acpi_device object
     * attached to it, install a wakeup notification handler for the device and
    
     * add it to the general ACPI PM domain.  If @power_on is set, the device will
     * be put into the ACPI D0 state before the function returns.
    
     *
     * This assumes that the @dev's bus type uses generic power management callbacks
     * (or doesn't use any power management callbacks at all).
     *
     * Callers must ensure proper synchronization of this function with power
     * management callbacks.
     */
    
    int acpi_dev_pm_attach(struct device *dev, bool power_on)
    
    {
    	struct acpi_device *adev = acpi_dev_pm_get_node(dev);
    
    	if (!adev)
    		return -ENODEV;
    
    	if (dev->pm_domain)
    		return -EEXIST;
    
    	acpi_add_pm_notifier(adev, acpi_wakeup_device, dev);
    	dev->pm_domain = &acpi_general_pm_domain;
    
    	if (power_on) {
    		acpi_dev_pm_full_power(adev);
    		__acpi_device_run_wake(adev, false);