Skip to content
Snippets Groups Projects
builtin-stat.c 38.5 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * builtin-stat.c
     *
     * Builtin stat command: Give a precise performance counters summary
     * overview about any workload, CPU or specific PID.
     *
     * Sample output:
    
      Performance counter stats for './hackbench 10':
    
           1708.761321 task-clock                #   11.037 CPUs utilized
                41,190 context-switches          #    0.024 M/sec
                 6,735 CPU-migrations            #    0.004 M/sec
                17,318 page-faults               #    0.010 M/sec
         5,205,202,243 cycles                    #    3.046 GHz
         3,856,436,920 stalled-cycles-frontend   #   74.09% frontend cycles idle
         1,600,790,871 stalled-cycles-backend    #   30.75% backend  cycles idle
         2,603,501,247 instructions              #    0.50  insns per cycle
                                                 #    1.48  stalled cycles per insn
           484,357,498 branches                  #  283.455 M/sec
             6,388,934 branch-misses             #    1.32% of all branches
    
            0.154822978  seconds time elapsed
    
     * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
    
     *
     * Improvements and fixes by:
     *
     *   Arjan van de Ven <arjan@linux.intel.com>
     *   Yanmin Zhang <yanmin.zhang@intel.com>
     *   Wu Fengguang <fengguang.wu@intel.com>
     *   Mike Galbraith <efault@gmx.de>
     *   Paul Mackerras <paulus@samba.org>
    
     *   Jaswinder Singh Rajput <jaswinder@kernel.org>
    
     *
     * Released under the GPL v2. (and only v2, not any later version)
    
    #include "perf.h"
    
    #include "util/util.h"
    
    #include "util/parse-options.h"
    #include "util/parse-events.h"
    
    #include "util/event.h"
    
    #include "util/evlist.h"
    
    #include "util/evsel.h"
    
    #include "util/debug.h"
    
    #include "util/color.h"
    
    #include "util/stat.h"
    
    #include "util/header.h"
    
    #include "util/cpumap.h"
    
    #include "util/thread_map.h"
    
    #include <stdlib.h>
    
    #define DEFAULT_SEPARATOR	" "
    
    #define CNTR_NOT_SUPPORTED	"<not supported>"
    #define CNTR_NOT_COUNTED	"<not counted>"
    
    static void print_stat(int argc, const char **argv);
    static void print_counter_aggr(struct perf_evsel *counter, char *prefix);
    static void print_counter(struct perf_evsel *counter, char *prefix);
    
    static void print_aggr_socket(char *prefix);
    
    static struct perf_evlist	*evsel_list;
    
    static struct perf_target	target = {
    	.uid	= UINT_MAX,
    };
    
    static int			run_count			=  1;
    
    static bool			no_inherit			= false;
    
    static bool			no_aggr				= false;
    
    static bool			aggr_socket			= false;
    
    static pid_t			child_pid			= -1;
    
    static int			detailed_run			=  0;
    
    static bool			big_num				=  true;
    
    static int			big_num_opt			=  -1;
    static const char		*csv_sep			= NULL;
    static bool			csv_output			= false;
    
    static bool			group				= false;
    
    static FILE			*output				= NULL;
    
    static const char		*pre_cmd			= NULL;
    static const char		*post_cmd			= NULL;
    static bool			sync_run			= false;
    
    static unsigned int		interval			= 0;
    static struct timespec		ref_time;
    
    static struct cpu_map		*sock_map;
    
    static volatile int done = 0;
    
    
    struct perf_stat {
    	struct stats	  res_stats[3];
    };
    
    
    static inline void diff_timespec(struct timespec *r, struct timespec *a,
    				 struct timespec *b)
    {
    	r->tv_sec = a->tv_sec - b->tv_sec;
    	if (a->tv_nsec < b->tv_nsec) {
    		r->tv_nsec = a->tv_nsec + 1000000000L - b->tv_nsec;
    		r->tv_sec--;
    	} else {
    		r->tv_nsec = a->tv_nsec - b->tv_nsec ;
    	}
    }
    
    static inline struct cpu_map *perf_evsel__cpus(struct perf_evsel *evsel)
    {
    	return (evsel->cpus && !target.cpu_list) ? evsel->cpus : evsel_list->cpus;
    }
    
    static inline int perf_evsel__nr_cpus(struct perf_evsel *evsel)
    {
    	return perf_evsel__cpus(evsel)->nr;
    }
    
    
    static int perf_evsel__alloc_stat_priv(struct perf_evsel *evsel)
    
    	evsel->priv = zalloc(sizeof(struct perf_stat));
    
    	return evsel->priv == NULL ? -ENOMEM : 0;
    }
    
    static void perf_evsel__free_stat_priv(struct perf_evsel *evsel)
    {
    	free(evsel->priv);
    	evsel->priv = NULL;
    }
    
    
    static int perf_evsel__alloc_prev_raw_counts(struct perf_evsel *evsel)
    
    	void *addr;
    	size_t sz;
    
    	sz = sizeof(*evsel->counts) +
    	     (perf_evsel__nr_cpus(evsel) * sizeof(struct perf_counts_values));
    
    	addr = zalloc(sz);
    	if (!addr)
    		return -ENOMEM;
    
    	evsel->prev_raw_counts =  addr;
    
    	return 0;
    
    static void perf_evsel__free_prev_raw_counts(struct perf_evsel *evsel)
    
    	free(evsel->prev_raw_counts);
    	evsel->prev_raw_counts = NULL;
    
    static struct stats runtime_nsecs_stats[MAX_NR_CPUS];
    static struct stats runtime_cycles_stats[MAX_NR_CPUS];
    static struct stats runtime_stalled_cycles_front_stats[MAX_NR_CPUS];
    static struct stats runtime_stalled_cycles_back_stats[MAX_NR_CPUS];
    static struct stats runtime_branches_stats[MAX_NR_CPUS];
    static struct stats runtime_cacherefs_stats[MAX_NR_CPUS];
    static struct stats runtime_l1_dcache_stats[MAX_NR_CPUS];
    static struct stats runtime_l1_icache_stats[MAX_NR_CPUS];
    static struct stats runtime_ll_cache_stats[MAX_NR_CPUS];
    static struct stats runtime_itlb_cache_stats[MAX_NR_CPUS];
    static struct stats runtime_dtlb_cache_stats[MAX_NR_CPUS];
    static struct stats walltime_nsecs_stats;
    
    static int create_perf_stat_counter(struct perf_evsel *evsel)
    
    	struct perf_event_attr *attr = &evsel->attr;
    
    		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
    				    PERF_FORMAT_TOTAL_TIME_RUNNING;
    
    	attr->inherit = !no_inherit;
    
    
    	if (perf_target__has_cpu(&target))
    		return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
    
    	if (!perf_target__has_task(&target) &&
    
    	    perf_evsel__is_group_leader(evsel)) {
    
    		attr->disabled = 1;
    		attr->enable_on_exec = 1;
    
    	return perf_evsel__open_per_thread(evsel, evsel_list->threads);
    
    /*
     * Does the counter have nsecs as a unit?
     */
    
    static inline int nsec_counter(struct perf_evsel *evsel)
    
    	if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
    	    perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
    
    /*
     * Update various tracking values we maintain to print
     * more semantic information such as miss/hit ratios,
     * instruction rates, etc:
     */
    static void update_shadow_stats(struct perf_evsel *counter, u64 *count)
    {
    	if (perf_evsel__match(counter, SOFTWARE, SW_TASK_CLOCK))
    		update_stats(&runtime_nsecs_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
    		update_stats(&runtime_cycles_stats[0], count[0]);
    
    	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
    		update_stats(&runtime_stalled_cycles_front_stats[0], count[0]);
    
    	else if (perf_evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
    
    		update_stats(&runtime_stalled_cycles_back_stats[0], count[0]);
    
    	else if (perf_evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
    		update_stats(&runtime_branches_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
    		update_stats(&runtime_cacherefs_stats[0], count[0]);
    
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
    		update_stats(&runtime_l1_dcache_stats[0], count[0]);
    
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
    		update_stats(&runtime_l1_icache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_LL))
    		update_stats(&runtime_ll_cache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
    		update_stats(&runtime_dtlb_cache_stats[0], count[0]);
    	else if (perf_evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
    		update_stats(&runtime_itlb_cache_stats[0], count[0]);
    
     * Read out the results of a single counter:
    
     * aggregate counts across CPUs in system-wide mode
    
    static int read_counter_aggr(struct perf_evsel *counter)
    
    	struct perf_stat *ps = counter->priv;
    
    	u64 *count = counter->counts->aggr.values;
    	int i;
    
    	if (__perf_evsel__read(counter, perf_evsel__nr_cpus(counter),
    
    			       thread_map__nr(evsel_list->threads), scale) < 0)
    
    
    	for (i = 0; i < 3; i++)
    
    		update_stats(&ps->res_stats[i], count[i]);
    
    		fprintf(output, "%s: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
    
    			perf_evsel__name(counter), count[0], count[1], count[2]);
    
    	/*
    	 * Save the full runtime - to allow normalization during printout:
    	 */
    
    	update_shadow_stats(counter, count);
    
    }
    
    /*
     * Read out the results of a single counter:
     * do not aggregate counts across CPUs in system-wide mode
     */
    
    static int read_counter(struct perf_evsel *counter)
    
    	for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    
    		if (__perf_evsel__read_on_cpu(counter, cpu, 0, scale) < 0)
    			return -1;
    
    		count = counter->counts->cpu[cpu].values;
    
    		update_shadow_stats(counter, count);
    
    static void print_interval(void)
    {
    	static int num_print_interval;
    	struct perf_evsel *counter;
    	struct perf_stat *ps;
    	struct timespec ts, rs;
    	char prefix[64];
    
    	if (no_aggr) {
    		list_for_each_entry(counter, &evsel_list->entries, node) {
    			ps = counter->priv;
    			memset(ps->res_stats, 0, sizeof(ps->res_stats));
    			read_counter(counter);
    		}
    	} else {
    		list_for_each_entry(counter, &evsel_list->entries, node) {
    			ps = counter->priv;
    			memset(ps->res_stats, 0, sizeof(ps->res_stats));
    			read_counter_aggr(counter);
    		}
    	}
    	clock_gettime(CLOCK_MONOTONIC, &ts);
    	diff_timespec(&rs, &ts, &ref_time);
    	sprintf(prefix, "%6lu.%09lu%s", rs.tv_sec, rs.tv_nsec, csv_sep);
    
    	if (num_print_interval == 0 && !csv_output) {
    
    		if (aggr_socket)
    			fprintf(output, "#           time socket cpus             counts events\n");
    		else if (no_aggr)
    
    			fprintf(output, "#           time CPU                 counts events\n");
    		else
    			fprintf(output, "#           time             counts events\n");
    	}
    
    	if (++num_print_interval == 25)
    		num_print_interval = 0;
    
    
    	if (aggr_socket)
    		print_aggr_socket(prefix);
    	else if (no_aggr) {
    
    		list_for_each_entry(counter, &evsel_list->entries, node)
    			print_counter(counter, prefix);
    	} else {
    		list_for_each_entry(counter, &evsel_list->entries, node)
    			print_counter_aggr(counter, prefix);
    	}
    }
    
    
    static int __run_perf_stat(int argc __maybe_unused, const char **argv)
    
    	struct perf_evsel *counter;
    
    	struct timespec ts;
    
    	int child_ready_pipe[2], go_pipe[2];
    
    	if (interval) {
    		ts.tv_sec  = interval / 1000;
    		ts.tv_nsec = (interval % 1000) * 1000000;
    	} else {
    		ts.tv_sec  = 1;
    		ts.tv_nsec = 0;
    	}
    
    
    	if (aggr_socket
    	    && cpu_map__build_socket_map(evsel_list->cpus, &sock_map)) {
    		perror("cannot build socket map");
    		return -1;
    	}
    
    
    	if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
    
    		perror("failed to create pipes");
    
    	if (forks) {
    
    			perror("failed to fork");
    
    
    			close(child_ready_pipe[0]);
    			close(go_pipe[1]);
    			fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
    
    			/*
    			 * Do a dummy execvp to get the PLT entry resolved,
    			 * so we avoid the resolver overhead on the real
    			 * execvp call.
    			 */
    			execvp("", (char **)argv);
    
    			/*
    			 * Tell the parent we're ready to go
    			 */
    			close(child_ready_pipe[1]);
    
    			/*
    			 * Wait until the parent tells us to go.
    			 */
    			if (read(go_pipe[0], &buf, 1) == -1)
    				perror("unable to read pipe");
    
    			execvp(argv[0], (char **)argv);
    
    			perror(argv[0]);
    			exit(-1);
    		}
    
    		if (perf_target__none(&target))
    
    			evsel_list->threads->map[0] = child_pid;
    
    		 * Wait for the child to be ready to exec.
    
    		close(go_pipe[0]);
    		if (read(child_ready_pipe[0], &buf, 1) == -1)
    
    			perror("unable to read pipe");
    
    		close(child_ready_pipe[0]);
    
    		perf_evlist__set_leader(evsel_list);
    
    	list_for_each_entry(counter, &evsel_list->entries, node) {
    
    		if (create_perf_stat_counter(counter) < 0) {
    
    			/*
    			 * PPC returns ENXIO for HW counters until 2.6.37
    			 * (behavior changed with commit b0a873e).
    			 */
    
    			if (errno == EINVAL || errno == ENOSYS ||
    
    			    errno == ENOENT || errno == EOPNOTSUPP ||
    			    errno == ENXIO) {
    
    				if (verbose)
    					ui__warning("%s event is not supported by the kernel.\n",
    
    				counter->supported = false;
    
    			perf_evsel__open_strerror(counter, &target,
    						  errno, msg, sizeof(msg));
    			ui__error("%s\n", msg);
    
    
    			if (child_pid != -1)
    				kill(child_pid, SIGTERM);
    
    		counter->supported = true;
    
    	if (perf_evlist__apply_filters(evsel_list)) {
    
    		error("failed to set filter with %d (%s)\n", errno,
    			strerror(errno));
    		return -1;
    	}
    
    
    	/*
    	 * Enable counters and exec the command:
    	 */
    	t0 = rdclock();
    
    	clock_gettime(CLOCK_MONOTONIC, &ref_time);
    
    	if (forks) {
    		close(go_pipe[1]);
    
    		if (interval) {
    			while (!waitpid(child_pid, &status, WNOHANG)) {
    				nanosleep(&ts, NULL);
    				print_interval();
    			}
    		}
    
    		wait(&status);
    
    		if (WIFSIGNALED(status))
    			psignal(WTERMSIG(status), argv[0]);
    
    		while (!done) {
    			nanosleep(&ts, NULL);
    			if (interval)
    				print_interval();
    		}
    
    	update_stats(&walltime_nsecs_stats, t1 - t0);
    
    		list_for_each_entry(counter, &evsel_list->entries, node) {
    
    			read_counter(counter);
    
    			perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter), 1);
    
    		list_for_each_entry(counter, &evsel_list->entries, node) {
    
    			read_counter_aggr(counter);
    
    			perf_evsel__close_fd(counter, perf_evsel__nr_cpus(counter),
    
    					     thread_map__nr(evsel_list->threads));
    
    static int run_perf_stat(int argc __maybe_unused, const char **argv)
    {
    	int ret;
    
    	if (pre_cmd) {
    		ret = system(pre_cmd);
    		if (ret)
    			return ret;
    	}
    
    	if (sync_run)
    		sync();
    
    	ret = __run_perf_stat(argc, argv);
    	if (ret)
    		return ret;
    
    	if (post_cmd) {
    		ret = system(post_cmd);
    		if (ret)
    			return ret;
    	}
    
    	return ret;
    }
    
    
    static void print_noise_pct(double total, double avg)
    {
    
    	double pct = rel_stddev_stats(total, avg);
    
    	if (csv_output)
    
    		fprintf(output, "%s%.2f%%", csv_sep, pct);
    
    		fprintf(output, "  ( +-%6.2f%% )", pct);
    
    static void print_noise(struct perf_evsel *evsel, double avg)
    
    	print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
    
    static void nsec_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
    
    	double msecs = avg / 1e6;
    
    	char cpustr[16] = { '\0', };
    
    	const char *fmt = csv_output ? "%s%.6f%s%s" : "%s%18.6f%s%-25s";
    
    	if (aggr_socket)
    		sprintf(cpustr, "S%*d%s%*d%s",
    			csv_output ? 0 : -5,
    			cpu,
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    	else if (no_aggr)
    
    		sprintf(cpustr, "CPU%*d%s",
    			csv_output ? 0 : -4,
    
    			perf_evsel__cpus(evsel)->map[cpu], csv_sep);
    
    	fprintf(output, fmt, cpustr, msecs, csv_sep, perf_evsel__name(evsel));
    
    	if (evsel->cgrp)
    
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    
    	if (csv_output || interval)
    
    	if (perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
    
    		fprintf(output, " # %8.3f CPUs utilized          ",
    			avg / avg_stats(&walltime_nsecs_stats));
    
    	else
    		fprintf(output, "                                   ");
    
    /* used for get_ratio_color() */
    enum grc_type {
    	GRC_STALLED_CYCLES_FE,
    	GRC_STALLED_CYCLES_BE,
    	GRC_CACHE_MISSES,
    	GRC_MAX_NR
    };
    
    static const char *get_ratio_color(enum grc_type type, double ratio)
    {
    	static const double grc_table[GRC_MAX_NR][3] = {
    		[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
    		[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
    		[GRC_CACHE_MISSES] 	= { 20.0, 10.0, 5.0 },
    	};
    	const char *color = PERF_COLOR_NORMAL;
    
    	if (ratio > grc_table[type][0])
    		color = PERF_COLOR_RED;
    	else if (ratio > grc_table[type][1])
    		color = PERF_COLOR_MAGENTA;
    	else if (ratio > grc_table[type][2])
    		color = PERF_COLOR_YELLOW;
    
    	return color;
    }
    
    
    static void print_stalled_cycles_frontend(int cpu,
    					  struct perf_evsel *evsel
    					  __maybe_unused, double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_cycles_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " frontend cycles idle   ");
    
    static void print_stalled_cycles_backend(int cpu,
    					 struct perf_evsel *evsel
    					 __maybe_unused, double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_cycles_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " backend  cycles idle   ");
    
    static void print_branch_misses(int cpu,
    				struct perf_evsel *evsel __maybe_unused,
    				double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_branches_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all branches        ");
    
    static void print_l1_dcache_misses(int cpu,
    				   struct perf_evsel *evsel __maybe_unused,
    				   double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_l1_dcache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all L1-dcache hits  ");
    
    static void print_l1_icache_misses(int cpu,
    				   struct perf_evsel *evsel __maybe_unused,
    				   double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_l1_icache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all L1-icache hits  ");
    
    static void print_dtlb_cache_misses(int cpu,
    				    struct perf_evsel *evsel __maybe_unused,
    				    double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_dtlb_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all dTLB cache hits ");
    
    static void print_itlb_cache_misses(int cpu,
    				    struct perf_evsel *evsel __maybe_unused,
    				    double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_itlb_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all iTLB cache hits ");
    
    static void print_ll_cache_misses(int cpu,
    				  struct perf_evsel *evsel __maybe_unused,
    				  double avg)
    
    {
    	double total, ratio = 0.0;
    	const char *color;
    
    	total = avg_stats(&runtime_ll_cache_stats[cpu]);
    
    	if (total)
    		ratio = avg / total * 100.0;
    
    
    	color = get_ratio_color(GRC_CACHE_MISSES, ratio);
    
    	fprintf(output, " #  ");
    	color_fprintf(output, color, "%6.2f%%", ratio);
    	fprintf(output, " of all LL-cache hits   ");
    
    static void abs_printout(int cpu, int nr, struct perf_evsel *evsel, double avg)
    
    	double total, ratio = 0.0;
    
    	char cpustr[16] = { '\0', };
    
    	const char *fmt;
    
    	if (csv_output)
    		fmt = "%s%.0f%s%s";
    	else if (big_num)
    
    	if (aggr_socket)
    		sprintf(cpustr, "S%*d%s%*d%s",
    			csv_output ? 0 : -5,
    			cpu,
    			csv_sep,
    			csv_output ? 0 : 4,
    			nr,
    			csv_sep);
    	else if (no_aggr)
    
    		sprintf(cpustr, "CPU%*d%s",
    			csv_output ? 0 : -4,
    
    			perf_evsel__cpus(evsel)->map[cpu], csv_sep);
    
    	fprintf(output, fmt, cpustr, avg, csv_sep, perf_evsel__name(evsel));
    
    	if (evsel->cgrp)
    
    		fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
    
    	if (csv_output || interval)
    
    	if (perf_evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
    
    		total = avg_stats(&runtime_cycles_stats[cpu]);
    
    		if (total)
    			ratio = avg / total;
    
    
    		fprintf(output, " #   %5.2f  insns per cycle        ", ratio);
    
    		total = avg_stats(&runtime_stalled_cycles_front_stats[cpu]);
    		total = max(total, avg_stats(&runtime_stalled_cycles_back_stats[cpu]));
    
    			fprintf(output, "\n                                             #   %5.2f  stalled cycles per insn", ratio);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES) &&
    
    			runtime_branches_stats[cpu].n != 0) {
    
    		print_branch_misses(cpu, evsel, avg);
    
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1D |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    
    			runtime_l1_dcache_stats[cpu].n != 0) {
    
    		print_l1_dcache_misses(cpu, evsel, avg);
    
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_L1I |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_l1_icache_stats[cpu].n != 0) {
    		print_l1_icache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_DTLB |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_dtlb_cache_stats[cpu].n != 0) {
    		print_dtlb_cache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_ITLB |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_itlb_cache_stats[cpu].n != 0) {
    		print_itlb_cache_misses(cpu, evsel, avg);
    	} else if (
    		evsel->attr.type == PERF_TYPE_HW_CACHE &&
    		evsel->attr.config ==  ( PERF_COUNT_HW_CACHE_LL |
    					((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
    					((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16)) &&
    			runtime_ll_cache_stats[cpu].n != 0) {
    		print_ll_cache_misses(cpu, evsel, avg);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_CACHE_MISSES) &&
    			runtime_cacherefs_stats[cpu].n != 0) {
    		total = avg_stats(&runtime_cacherefs_stats[cpu]);
    
    		if (total)
    			ratio = avg * 100 / total;
    
    
    		fprintf(output, " # %8.3f %% of all cache refs    ", ratio);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
    		print_stalled_cycles_frontend(cpu, evsel, avg);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
    
    		print_stalled_cycles_backend(cpu, evsel, avg);
    
    	} else if (perf_evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
    
    		total = avg_stats(&runtime_nsecs_stats[cpu]);
    
    		fprintf(output, " # %8.3f GHz                    ", ratio);
    
    	} else if (runtime_nsecs_stats[cpu].n != 0) {
    
    		char unit = 'M';
    
    
    		total = avg_stats(&runtime_nsecs_stats[cpu]);
    
    		if (ratio < 0.001) {
    			ratio *= 1000;
    			unit = 'K';
    		}
    
    		fprintf(output, " # %8.3f %c/sec                  ", ratio, unit);
    
    		fprintf(output, "                                   ");
    
    static void print_aggr_socket(char *prefix)
    {
    	struct perf_evsel *counter;
    	u64 ena, run, val;
    	int cpu, s, s2, sock, nr;
    
    	if (!sock_map)
    		return;
    
    	for (s = 0; s < sock_map->nr; s++) {
    		sock = cpu_map__socket(sock_map, s);
    		list_for_each_entry(counter, &evsel_list->entries, node) {
    			val = ena = run = 0;
    			nr = 0;
    			for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
    				s2 = cpu_map__get_socket(evsel_list->cpus, cpu);
    				if (s2 != sock)
    					continue;
    				val += counter->counts->cpu[cpu].val;
    				ena += counter->counts->cpu[cpu].ena;
    				run += counter->counts->cpu[cpu].run;
    				nr++;
    			}
    			if (prefix)
    				fprintf(output, "%s", prefix);
    
    			if (run == 0 || ena == 0) {
    				fprintf(output, "S%*d%s%*d%s%*s%s%*s",
    					csv_output ? 0 : -5,
    					s,
    					csv_sep,
    					csv_output ? 0 : 4,
    					nr,
    					csv_sep,
    					csv_output ? 0 : 18,
    					counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    					csv_sep,
    					csv_output ? 0 : -24,
    					perf_evsel__name(counter));
    				if (counter->cgrp)
    					fprintf(output, "%s%s",
    						csv_sep, counter->cgrp->name);
    
    				fputc('\n', output);
    				continue;
    			}
    
    			if (nsec_counter(counter))
    				nsec_printout(sock, nr, counter, val);
    			else
    				abs_printout(sock, nr, counter, val);
    
    			if (!csv_output) {
    				print_noise(counter, 1.0);
    
    				if (run != ena)
    					fprintf(output, "  (%.2f%%)",
    						100.0 * run / ena);
    			}
    			fputc('\n', output);
    		}
    	}
    }
    
    
    /*
     * Print out the results of a single counter:
    
     * aggregated counts in system-wide mode
    
    static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
    
    	struct perf_stat *ps = counter->priv;
    	double avg = avg_stats(&ps->res_stats[0]);
    
    	int scaled = counter->counts->scaled;
    
    	if (prefix)
    		fprintf(output, "%s", prefix);
    
    
    		fprintf(output, "%*s%s%*s",
    
    			csv_output ? 0 : 18,
    
    			counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
    
    			csv_sep,
    			csv_output ? 0 : -24,
    
    
    		if (counter->cgrp)
    
    			fprintf(output, "%s%s", csv_sep, counter->cgrp->name);
    
    		fputc('\n', output);
    
    	if (nsec_counter(counter))
    
    		nsec_printout(-1, 0, counter, avg);
    
    	else
    
    		abs_printout(-1, 0, counter, avg);
    
    	print_noise(counter, avg);
    
    
    	if (csv_output) {
    
    		fputc('\n', output);
    
    	if (scaled) {
    		double avg_enabled, avg_running;
    
    
    		avg_enabled = avg_stats(&ps->res_stats[1]);
    		avg_running = avg_stats(&ps->res_stats[2]);
    
    		fprintf(output, " [%5.2f%%]", 100 * avg_running / avg_enabled);
    
    	fprintf(output, "\n");