Skip to content
Snippets Groups Projects
session.c 21.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • #define _FILE_OFFSET_BITS 64
    
    
    #include <linux/kernel.h>
    
    
    #include <unistd.h>
    #include <sys/types.h>
    
    #include <sys/mman.h>
    
    #include "util.h"
    
    static int perf_session__open(struct perf_session *self, bool force)
    {
    	struct stat input_stat;
    
    
    	if (!strcmp(self->filename, "-")) {
    		self->fd_pipe = true;
    		self->fd = STDIN_FILENO;
    
    		if (perf_header__read(self, self->fd) < 0)
    			pr_err("incompatible file format");
    
    		return 0;
    	}
    
    
    	self->fd = open(self->filename, O_RDONLY);
    
    		int err = errno;
    
    		pr_err("failed to open %s: %s", self->filename, strerror(err));
    		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
    
    			pr_err("  (try 'perf record' first)");
    		pr_err("\n");
    		return -errno;
    	}
    
    	if (fstat(self->fd, &input_stat) < 0)
    		goto out_close;
    
    	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
    		pr_err("file %s not owned by current user or root\n",
    		       self->filename);
    		goto out_close;
    	}
    
    	if (!input_stat.st_size) {
    		pr_info("zero-sized file (%s), nothing to do!\n",
    			self->filename);
    		goto out_close;
    	}
    
    
    	if (perf_header__read(self, self->fd) < 0) {
    
    		pr_err("incompatible file format");
    		goto out_close;
    	}
    
    	self->size = input_stat.st_size;
    	return 0;
    
    out_close:
    	close(self->fd);
    	self->fd = -1;
    	return -1;
    }
    
    
    void perf_session__update_sample_type(struct perf_session *self)
    {
    	self->sample_type = perf_header__sample_type(&self->header);
    }
    
    
    int perf_session__create_kernel_maps(struct perf_session *self)
    {
    
    	int ret = machine__create_kernel_maps(&self->host_machine);
    
    		ret = machines__create_guest_kernel_maps(&self->machines);
    
    struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
    
    	size_t len = filename ? strlen(filename) + 1 : 0;
    
    	struct perf_session *self = zalloc(sizeof(*self) + len);
    
    	if (self == NULL)
    		goto out;
    
    	if (perf_header__init(&self->header) < 0)
    
    
    	memcpy(self->filename, filename, len);
    
    	INIT_LIST_HEAD(&self->dead_threads);
    
    	self->machines = RB_ROOT;
    
    	self->repipe = repipe;
    
    	INIT_LIST_HEAD(&self->ordered_samples.samples_head);
    
    	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
    
    	if (mode == O_RDONLY) {
    		if (perf_session__open(self, force) < 0)
    			goto out_delete;
    	} else if (mode == O_WRONLY) {
    		/*
    		 * In O_RDONLY mode this will be performed when reading the
    		 * kernel MMAP event, in event__process_mmap().
    		 */
    		if (perf_session__create_kernel_maps(self) < 0)
    			goto out_delete;
    	}
    
    	perf_session__update_sample_type(self);
    
    out_delete:
    	perf_session__delete(self);
    	return NULL;
    
    }
    
    void perf_session__delete(struct perf_session *self)
    {
    	perf_header__exit(&self->header);
    	close(self->fd);
    	free(self);
    }
    
    void perf_session__remove_thread(struct perf_session *self, struct thread *th)
    {
    	rb_erase(&th->rb_node, &self->threads);
    	/*
    	 * We may have references to this thread, for instance in some hist_entry
    	 * instances, so just move them to a separate list.
    	 */
    	list_add_tail(&th->node, &self->dead_threads);
    }
    
    
    static bool symbol__match_parent_regex(struct symbol *sym)
    {
    	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
    		return 1;
    
    	return 0;
    }
    
    
    struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
    						   struct thread *thread,
    						   struct ip_callchain *chain,
    						   struct symbol **parent)
    
    {
    	u8 cpumode = PERF_RECORD_MISC_USER;
    	unsigned int i;
    
    	struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
    
    
    	for (i = 0; i < chain->nr; i++) {
    		u64 ip = chain->ips[i];
    		struct addr_location al;
    
    		if (ip >= PERF_CONTEXT_MAX) {
    			switch (ip) {
    			case PERF_CONTEXT_HV:
    				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
    			case PERF_CONTEXT_KERNEL:
    				cpumode = PERF_RECORD_MISC_KERNEL;	break;
    			case PERF_CONTEXT_USER:
    				cpumode = PERF_RECORD_MISC_USER;	break;
    			default:
    				break;
    			}
    			continue;
    		}
    
    
    		thread__find_addr_location(thread, self, cpumode,
    
    				MAP__FUNCTION, thread->pid, ip, &al, NULL);
    
    		if (al.sym != NULL) {
    			if (sort__has_parent && !*parent &&
    			    symbol__match_parent_regex(al.sym))
    				*parent = al.sym;
    
    			if (!symbol_conf.use_callchain)
    
    			syms[i].map = al.map;
    			syms[i].sym = al.sym;
    
    
    static int process_event_stub(event_t *event __used,
    			      struct perf_session *session __used)
    {
    	dump_printf(": unhandled!\n");
    	return 0;
    }
    
    
    static int process_finished_round_stub(event_t *event __used,
    				       struct perf_session *session __used,
    				       struct perf_event_ops *ops __used)
    {
    	dump_printf(": unhandled!\n");
    	return 0;
    }
    
    static int process_finished_round(event_t *event,
    				  struct perf_session *session,
    				  struct perf_event_ops *ops);
    
    
    static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
    {
    
    	if (handler->sample == NULL)
    		handler->sample = process_event_stub;
    	if (handler->mmap == NULL)
    		handler->mmap = process_event_stub;
    	if (handler->comm == NULL)
    		handler->comm = process_event_stub;
    	if (handler->fork == NULL)
    		handler->fork = process_event_stub;
    	if (handler->exit == NULL)
    		handler->exit = process_event_stub;
    	if (handler->lost == NULL)
    		handler->lost = process_event_stub;
    	if (handler->read == NULL)
    		handler->read = process_event_stub;
    	if (handler->throttle == NULL)
    		handler->throttle = process_event_stub;
    	if (handler->unthrottle == NULL)
    		handler->unthrottle = process_event_stub;
    
    	if (handler->attr == NULL)
    		handler->attr = process_event_stub;
    
    	if (handler->event_type == NULL)
    		handler->event_type = process_event_stub;
    
    	if (handler->tracing_data == NULL)
    		handler->tracing_data = process_event_stub;
    
    	if (handler->build_id == NULL)
    		handler->build_id = process_event_stub;
    
    	if (handler->finished_round == NULL) {
    		if (handler->ordered_samples)
    			handler->finished_round = process_finished_round;
    		else
    			handler->finished_round = process_finished_round_stub;
    	}
    
    void mem_bswap_64(void *src, int byte_size)
    {
    	u64 *m = src;
    
    	while (byte_size > 0) {
    		*m = bswap_64(*m);
    		byte_size -= sizeof(u64);
    		++m;
    	}
    }
    
    static void event__all64_swap(event_t *self)
    {
    	struct perf_event_header *hdr = &self->header;
    	mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
    }
    
    static void event__comm_swap(event_t *self)
    {
    	self->comm.pid = bswap_32(self->comm.pid);
    	self->comm.tid = bswap_32(self->comm.tid);
    }
    
    static void event__mmap_swap(event_t *self)
    {
    	self->mmap.pid	 = bswap_32(self->mmap.pid);
    	self->mmap.tid	 = bswap_32(self->mmap.tid);
    	self->mmap.start = bswap_64(self->mmap.start);
    	self->mmap.len	 = bswap_64(self->mmap.len);
    	self->mmap.pgoff = bswap_64(self->mmap.pgoff);
    }
    
    static void event__task_swap(event_t *self)
    {
    	self->fork.pid	= bswap_32(self->fork.pid);
    	self->fork.tid	= bswap_32(self->fork.tid);
    	self->fork.ppid	= bswap_32(self->fork.ppid);
    	self->fork.ptid	= bswap_32(self->fork.ptid);
    	self->fork.time	= bswap_64(self->fork.time);
    }
    
    static void event__read_swap(event_t *self)
    {
    	self->read.pid		= bswap_32(self->read.pid);
    	self->read.tid		= bswap_32(self->read.tid);
    	self->read.value	= bswap_64(self->read.value);
    	self->read.time_enabled	= bswap_64(self->read.time_enabled);
    	self->read.time_running	= bswap_64(self->read.time_running);
    	self->read.id		= bswap_64(self->read.id);
    }
    
    
    static void event__attr_swap(event_t *self)
    {
    	size_t size;
    
    	self->attr.attr.type		= bswap_32(self->attr.attr.type);
    	self->attr.attr.size		= bswap_32(self->attr.attr.size);
    	self->attr.attr.config		= bswap_64(self->attr.attr.config);
    	self->attr.attr.sample_period	= bswap_64(self->attr.attr.sample_period);
    	self->attr.attr.sample_type	= bswap_64(self->attr.attr.sample_type);
    	self->attr.attr.read_format	= bswap_64(self->attr.attr.read_format);
    	self->attr.attr.wakeup_events	= bswap_32(self->attr.attr.wakeup_events);
    	self->attr.attr.bp_type		= bswap_32(self->attr.attr.bp_type);
    	self->attr.attr.bp_addr		= bswap_64(self->attr.attr.bp_addr);
    	self->attr.attr.bp_len		= bswap_64(self->attr.attr.bp_len);
    
    	size = self->header.size;
    	size -= (void *)&self->attr.id - (void *)self;
    	mem_bswap_64(self->attr.id, size);
    }
    
    
    static void event__event_type_swap(event_t *self)
    {
    	self->event_type.event_type.event_id =
    		bswap_64(self->event_type.event_type.event_id);
    }
    
    
    static void event__tracing_data_swap(event_t *self)
    {
    	self->tracing_data.size = bswap_32(self->tracing_data.size);
    }
    
    
    typedef void (*event__swap_op)(event_t *self);
    
    static event__swap_op event__swap_ops[] = {
    	[PERF_RECORD_MMAP]   = event__mmap_swap,
    	[PERF_RECORD_COMM]   = event__comm_swap,
    	[PERF_RECORD_FORK]   = event__task_swap,
    	[PERF_RECORD_EXIT]   = event__task_swap,
    	[PERF_RECORD_LOST]   = event__all64_swap,
    	[PERF_RECORD_READ]   = event__read_swap,
    	[PERF_RECORD_SAMPLE] = event__all64_swap,
    
    	[PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
    
    	[PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
    
    	[PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
    
    	[PERF_RECORD_HEADER_BUILD_ID]   = NULL,
    
    	[PERF_RECORD_HEADER_MAX]    = NULL,
    
    struct sample_queue {
    	u64			timestamp;
    	struct sample_event	*event;
    	struct list_head	list;
    };
    
    static void flush_sample_queue(struct perf_session *s,
    			       struct perf_event_ops *ops)
    {
    	struct list_head *head = &s->ordered_samples.samples_head;
    
    	u64 limit = s->ordered_samples.next_flush;
    
    	if (!ops->ordered_samples || !limit)
    
    		return;
    
    	list_for_each_entry_safe(iter, tmp, head, list) {
    		if (iter->timestamp > limit)
    			return;
    
    		if (iter == s->ordered_samples.last_inserted)
    			s->ordered_samples.last_inserted = NULL;
    
    		ops->sample((event_t *)iter->event, s);
    
    		s->ordered_samples.last_flush = iter->timestamp;
    		list_del(&iter->list);
    		free(iter->event);
    		free(iter);
    	}
    }
    
    
    /*
     * When perf record finishes a pass on every buffers, it records this pseudo
     * event.
     * We record the max timestamp t found in the pass n.
     * Assuming these timestamps are monotonic across cpus, we know that if
     * a buffer still has events with timestamps below t, they will be all
     * available and then read in the pass n + 1.
     * Hence when we start to read the pass n + 2, we can safely flush every
     * events with timestamps below t.
     *
     *    ============ PASS n =================
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          1          |         2
     *          2          |         3
     *          -          |         4  <--- max recorded
     *
     *    ============ PASS n + 1 ==============
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          3          |         5
     *          4          |         6
     *          5          |         7 <---- max recorded
     *
     *      Flush every events below timestamp 4
     *
     *    ============ PASS n + 2 ==============
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          6          |         8
     *          7          |         9
     *          -          |         10
     *
     *      Flush every events below timestamp 7
     *      etc...
     */
    static int process_finished_round(event_t *event __used,
    				  struct perf_session *session,
    				  struct perf_event_ops *ops)
    {
    	flush_sample_queue(session, ops);
    	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
    
    	return 0;
    }
    
    
    static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
    {
    	struct sample_queue *iter;
    
    	list_for_each_entry_reverse(iter, head, list) {
    		if (iter->timestamp < new->timestamp) {
    			list_add(&new->list, &iter->list);
    			return;
    		}
    	}
    
    	list_add(&new->list, head);
    }
    
    static void __queue_sample_before(struct sample_queue *new,
    				  struct sample_queue *iter,
    				  struct list_head *head)
    {
    	list_for_each_entry_continue_reverse(iter, head, list) {
    		if (iter->timestamp < new->timestamp) {
    			list_add(&new->list, &iter->list);
    			return;
    		}
    	}
    
    	list_add(&new->list, head);
    }
    
    static void __queue_sample_after(struct sample_queue *new,
    				 struct sample_queue *iter,
    				 struct list_head *head)
    {
    	list_for_each_entry_continue(iter, head, list) {
    		if (iter->timestamp > new->timestamp) {
    			list_add_tail(&new->list, &iter->list);
    			return;
    		}
    	}
    	list_add_tail(&new->list, head);
    }
    
    /* The queue is ordered by time */
    static void __queue_sample_event(struct sample_queue *new,
    				 struct perf_session *s)
    {
    	struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
    	struct list_head *head = &s->ordered_samples.samples_head;
    
    
    	if (!last_inserted) {
    		__queue_sample_end(new, head);
    		return;
    	}
    
    	/*
    	 * Most of the time the current event has a timestamp
    	 * very close to the last event inserted, unless we just switched
    	 * to another event buffer. Having a sorting based on a list and
    	 * on the last inserted event that is close to the current one is
    	 * probably more efficient than an rbtree based sorting.
    	 */
    	if (last_inserted->timestamp >= new->timestamp)
    		__queue_sample_before(new, last_inserted, head);
    	else
    		__queue_sample_after(new, last_inserted, head);
    }
    
    static int queue_sample_event(event_t *event, struct sample_data *data,
    
    {
    	u64 timestamp = data->time;
    	struct sample_queue *new;
    
    
    	if (timestamp < s->ordered_samples.last_flush) {
    		printf("Warning: Timestamp below last timeslice flush\n");
    		return -EINVAL;
    	}
    
    	new = malloc(sizeof(*new));
    	if (!new)
    		return -ENOMEM;
    
    	new->timestamp = timestamp;
    
    	new->event = malloc(event->header.size);
    	if (!new->event) {
    		free(new);
    		return -ENOMEM;
    	}
    
    	memcpy(new->event, event, event->header.size);
    
    	__queue_sample_event(new, s);
    	s->ordered_samples.last_inserted = new;
    
    
    	if (new->timestamp > s->ordered_samples.max_timestamp)
    		s->ordered_samples.max_timestamp = new->timestamp;
    
    
    	return 0;
    }
    
    static int perf_session__process_sample(event_t *event, struct perf_session *s,
    					struct perf_event_ops *ops)
    {
    	struct sample_data data;
    
    	if (!ops->ordered_samples)
    		return ops->sample(event, s);
    
    	bzero(&data, sizeof(struct sample_data));
    	event__parse_sample(event, s->sample_type, &data);
    
    
    	queue_sample_event(event, &data, s);
    
    static int perf_session__process_event(struct perf_session *self,
    				       event_t *event,
    				       struct perf_event_ops *ops,
    
    	if (event->header.type < PERF_RECORD_HEADER_MAX) {
    
    		dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
    
    			    offset + head, event->header.size,
    
    		hists__inc_nr_events(&self->hists, event->header.type);
    
    	if (self->header.needs_swap && event__swap_ops[event->header.type])
    		event__swap_ops[event->header.type](event);
    
    
    	switch (event->header.type) {
    	case PERF_RECORD_SAMPLE:
    
    		return perf_session__process_sample(event, self, ops);
    
    	case PERF_RECORD_HEADER_ATTR:
    		return ops->attr(event, self);
    
    	case PERF_RECORD_HEADER_EVENT_TYPE:
    		return ops->event_type(event, self);
    
    	case PERF_RECORD_HEADER_TRACING_DATA:
    		/* setup for reading amidst mmap */
    		lseek(self->fd, offset + head, SEEK_SET);
    		return ops->tracing_data(event, self);
    
    	case PERF_RECORD_HEADER_BUILD_ID:
    		return ops->build_id(event, self);
    
    	case PERF_RECORD_FINISHED_ROUND:
    		return ops->finished_round(event, self, ops);
    
    		++self->hists.stats.nr_unknown_events;
    
    void perf_event_header__bswap(struct perf_event_header *self)
    {
    	self->type = bswap_32(self->type);
    	self->misc = bswap_16(self->misc);
    	self->size = bswap_16(self->size);
    }
    
    
    static struct thread *perf_session__register_idle_thread(struct perf_session *self)
    {
    	struct thread *thread = perf_session__findnew(self, 0);
    
    	if (thread == NULL || thread__set_comm(thread, "swapper")) {
    		pr_err("problem inserting idle task.\n");
    		thread = NULL;
    	}
    
    	return thread;
    }
    
    
    int do_read(int fd, void *buf, size_t size)
    {
    	void *buf_start = buf;
    
    	while (size) {
    		int ret = read(fd, buf, size);
    
    		if (ret <= 0)
    			return ret;
    
    		size -= ret;
    		buf += ret;
    	}
    
    	return buf - buf_start;
    }
    
    #define session_done()	(*(volatile int *)(&session_done))
    volatile int session_done;
    
    static int __perf_session__process_pipe_events(struct perf_session *self,
    					       struct perf_event_ops *ops)
    {
    	event_t event;
    	uint32_t size;
    	int skip = 0;
    	u64 head;
    	int err;
    	void *p;
    
    	perf_event_ops__fill_defaults(ops);
    
    	head = 0;
    more:
    	err = do_read(self->fd, &event, sizeof(struct perf_event_header));
    	if (err <= 0) {
    		if (err == 0)
    			goto done;
    
    		pr_err("failed to read event header\n");
    		goto out_err;
    	}
    
    	if (self->header.needs_swap)
    		perf_event_header__bswap(&event.header);
    
    	size = event.header.size;
    	if (size == 0)
    		size = 8;
    
    	p = &event;
    	p += sizeof(struct perf_event_header);
    
    
    	if (size - sizeof(struct perf_event_header)) {
    		err = do_read(self->fd, p,
    			      size - sizeof(struct perf_event_header));
    		if (err <= 0) {
    			if (err == 0) {
    				pr_err("unexpected end of event stream\n");
    				goto done;
    			}
    
    			pr_err("failed to read event data\n");
    			goto out_err;
    		}
    
    	}
    
    	if (size == 0 ||
    	    (skip = perf_session__process_event(self, &event, ops,
    						0, head)) < 0) {
    		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
    			    head, event.header.size, event.header.type);
    		/*
    		 * assume we lost track of the stream, check alignment, and
    		 * increment a single u64 in the hope to catch on again 'soon'.
    		 */
    		if (unlikely(head & 7))
    			head &= ~7ULL;
    
    		size = 8;
    	}
    
    	head += size;
    
    	dump_printf("\n%#Lx [%#x]: event: %d\n",
    		    head, event.header.size, event.header.type);
    
    	if (skip > 0)
    		head += skip;
    
    	if (!session_done())
    		goto more;
    done:
    	err = 0;
    out_err:
    	return err;
    }
    
    
    int __perf_session__process_events(struct perf_session *self,
    				   u64 data_offset, u64 data_size,
    				   u64 file_size, struct perf_event_ops *ops)
    
    	int err, mmap_prot, mmap_flags;
    	u64 head, shift;
    	u64 offset = 0;
    
    	size_t	page_size;
    	event_t *event;
    	uint32_t size;
    	char *buf;
    
    	struct ui_progress *progress = ui_progress__new("Processing events...",
    							self->size);
    	if (progress == NULL)
    		return -1;
    
    	shift = page_size * (head / page_size);
    	offset += shift;
    	head -= shift;
    
    
    	mmap_prot  = PROT_READ;
    	mmap_flags = MAP_SHARED;
    
    	if (self->header.needs_swap) {
    		mmap_prot  |= PROT_WRITE;
    		mmap_flags = MAP_PRIVATE;
    	}
    
    	buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
    		   mmap_flags, self->fd, offset);
    
    	if (buf == MAP_FAILED) {
    		pr_err("failed to mmap file\n");
    		err = -errno;
    		goto out_err;
    	}
    
    more:
    	event = (event_t *)(buf + head);
    
    	ui_progress__update(progress, offset);
    
    	if (self->header.needs_swap)
    		perf_event_header__bswap(&event->header);
    
    	size = event->header.size;
    	if (size == 0)
    		size = 8;
    
    	if (head + event->header.size >= page_size * self->mmap_window) {
    		int munmap_ret;
    
    		shift = page_size * (head / page_size);
    
    		munmap_ret = munmap(buf, page_size * self->mmap_window);
    		assert(munmap_ret == 0);
    
    		offset += shift;
    		head -= shift;
    		goto remap;
    	}
    
    	size = event->header.size;
    
    
    	dump_printf("\n%#Lx [%#x]: event: %d\n",
    
    		    offset + head, event->header.size, event->header.type);
    
    
    	if (size == 0 ||
    	    perf_session__process_event(self, event, ops, offset, head) < 0) {
    
    		dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
    
    			    offset + head, event->header.size,
    
    			    event->header.type);
    		/*
    		 * assume we lost track of the stream, check alignment, and
    		 * increment a single u64 in the hope to catch on again 'soon'.
    		 */
    		if (unlikely(head & 7))
    			head &= ~7ULL;
    
    		size = 8;
    	}
    
    	head += size;
    
    
    	if (offset + head >= data_offset + data_size)
    
    	/* do the final flush for ordered samples */
    
    	self->ordered_samples.next_flush = ULLONG_MAX;
    
    	ui_progress__delete(progress);
    
    int perf_session__process_events(struct perf_session *self,
    				 struct perf_event_ops *ops)
    {
    	int err;
    
    	if (perf_session__register_idle_thread(self) == NULL)
    		return -ENOMEM;
    
    
    	if (!self->fd_pipe)
    		err = __perf_session__process_events(self,
    						     self->header.data_offset,
    						     self->header.data_size,
    						     self->size, ops);
    	else
    		err = __perf_session__process_pipe_events(self, ops);
    
    bool perf_session__has_traces(struct perf_session *self, const char *msg)
    
    		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
    		return false;
    
    int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
    
    					     const char *symbol_name,
    					     u64 addr)
    {
    	char *bracket;
    
    	struct ref_reloc_sym *ref;
    
    	ref = zalloc(sizeof(struct ref_reloc_sym));
    	if (ref == NULL)
    		return -ENOMEM;
    
    	ref->name = strdup(symbol_name);
    	if (ref->name == NULL) {
    		free(ref);
    
    	bracket = strchr(ref->name, ']');
    
    	if (bracket)
    		*bracket = '\0';
    
    
    
    	for (i = 0; i < MAP__NR_TYPES; ++i) {
    
    		struct kmap *kmap = map__kmap(maps[i]);
    		kmap->ref_reloc_sym = ref;
    
    
    size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
    {
    	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
    	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
    	       machines__fprintf_dsos(&self->machines, fp);
    }
    
    
    size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
    					  bool with_hits)
    {
    	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
    	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
    }