Skip to content
Snippets Groups Projects
ib_recv.c 27.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Copyright (c) 2006 Oracle.  All rights reserved.
     *
     * This software is available to you under a choice of one of two
     * licenses.  You may choose to be licensed under the terms of the GNU
     * General Public License (GPL) Version 2, available from the file
     * COPYING in the main directory of this source tree, or the
     * OpenIB.org BSD license below:
     *
     *     Redistribution and use in source and binary forms, with or
     *     without modification, are permitted provided that the following
     *     conditions are met:
     *
     *      - Redistributions of source code must retain the above
     *        copyright notice, this list of conditions and the following
     *        disclaimer.
     *
     *      - Redistributions in binary form must reproduce the above
     *        copyright notice, this list of conditions and the following
     *        disclaimer in the documentation and/or other materials
     *        provided with the distribution.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     *
     */
    #include <linux/kernel.h>
    
    #include <linux/pci.h>
    #include <linux/dma-mapping.h>
    #include <rdma/rdma_cm.h>
    
    #include "rds.h"
    #include "ib.h"
    
    static struct kmem_cache *rds_ib_incoming_slab;
    static struct kmem_cache *rds_ib_frag_slab;
    static atomic_t	rds_ib_allocation = ATOMIC_INIT(0);
    
    static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
    {
    	rdsdebug("frag %p page %p\n", frag, frag->f_page);
    	__free_page(frag->f_page);
    	frag->f_page = NULL;
    }
    
    static void rds_ib_frag_free(struct rds_page_frag *frag)
    {
    	rdsdebug("frag %p page %p\n", frag, frag->f_page);
    	BUG_ON(frag->f_page != NULL);
    	kmem_cache_free(rds_ib_frag_slab, frag);
    }
    
    /*
     * We map a page at a time.  Its fragments are posted in order.  This
     * is called in fragment order as the fragments get send completion events.
     * Only the last frag in the page performs the unmapping.
     *
     * It's OK for ring cleanup to call this in whatever order it likes because
     * DMA is not in flight and so we can unmap while other ring entries still
     * hold page references in their frags.
     */
    static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
    				   struct rds_ib_recv_work *recv)
    {
    	struct rds_page_frag *frag = recv->r_frag;
    
    	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
    	if (frag->f_mapped)
    		ib_dma_unmap_page(ic->i_cm_id->device,
    			       frag->f_mapped,
    			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
    	frag->f_mapped = 0;
    }
    
    void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
    {
    	struct rds_ib_recv_work *recv;
    	u32 i;
    
    	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
    		struct ib_sge *sge;
    
    		recv->r_ibinc = NULL;
    		recv->r_frag = NULL;
    
    		recv->r_wr.next = NULL;
    		recv->r_wr.wr_id = i;
    		recv->r_wr.sg_list = recv->r_sge;
    		recv->r_wr.num_sge = RDS_IB_RECV_SGE;
    
    		sge = rds_ib_data_sge(ic, recv->r_sge);
    		sge->addr = 0;
    		sge->length = RDS_FRAG_SIZE;
    		sge->lkey = ic->i_mr->lkey;
    
    		sge = rds_ib_header_sge(ic, recv->r_sge);
    		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
    		sge->length = sizeof(struct rds_header);
    		sge->lkey = ic->i_mr->lkey;
    	}
    }
    
    static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
    				  struct rds_ib_recv_work *recv)
    {
    	if (recv->r_ibinc) {
    		rds_inc_put(&recv->r_ibinc->ii_inc);
    		recv->r_ibinc = NULL;
    	}
    	if (recv->r_frag) {
    		rds_ib_recv_unmap_page(ic, recv);
    		if (recv->r_frag->f_page)
    			rds_ib_frag_drop_page(recv->r_frag);
    		rds_ib_frag_free(recv->r_frag);
    		recv->r_frag = NULL;
    	}
    }
    
    void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
    {
    	u32 i;
    
    	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
    		rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
    
    	if (ic->i_frag.f_page)
    		rds_ib_frag_drop_page(&ic->i_frag);
    }
    
    static int rds_ib_recv_refill_one(struct rds_connection *conn,
    				  struct rds_ib_recv_work *recv,
    				  gfp_t kptr_gfp, gfp_t page_gfp)
    {
    	struct rds_ib_connection *ic = conn->c_transport_data;
    	dma_addr_t dma_addr;
    	struct ib_sge *sge;
    	int ret = -ENOMEM;
    
    	if (recv->r_ibinc == NULL) {
    
    		if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
    
    			rds_ib_stats_inc(s_ib_rx_alloc_limit);
    			goto out;
    		}
    		recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
    						 kptr_gfp);
    
    		if (recv->r_ibinc == NULL) {
    			atomic_dec(&rds_ib_allocation);
    
    			goto out;
    
    		INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
    		rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
    	}
    
    	if (recv->r_frag == NULL) {
    		recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
    		if (recv->r_frag == NULL)
    			goto out;
    		INIT_LIST_HEAD(&recv->r_frag->f_item);
    		recv->r_frag->f_page = NULL;
    	}
    
    	if (ic->i_frag.f_page == NULL) {
    		ic->i_frag.f_page = alloc_page(page_gfp);
    		if (ic->i_frag.f_page == NULL)
    			goto out;
    		ic->i_frag.f_offset = 0;
    	}
    
    	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
    				  ic->i_frag.f_page,
    				  ic->i_frag.f_offset,
    				  RDS_FRAG_SIZE,
    				  DMA_FROM_DEVICE);
    	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
    		goto out;
    
    	/*
    	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
    	 * must be called on this recv.  This happens as completions hit
    	 * in order or on connection shutdown.
    	 */
    	recv->r_frag->f_page = ic->i_frag.f_page;
    	recv->r_frag->f_offset = ic->i_frag.f_offset;
    	recv->r_frag->f_mapped = dma_addr;
    
    	sge = rds_ib_data_sge(ic, recv->r_sge);
    	sge->addr = dma_addr;
    	sge->length = RDS_FRAG_SIZE;
    
    	sge = rds_ib_header_sge(ic, recv->r_sge);
    	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
    	sge->length = sizeof(struct rds_header);
    
    	get_page(recv->r_frag->f_page);
    
    	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
    		ic->i_frag.f_offset += RDS_FRAG_SIZE;
    	} else {
    		put_page(ic->i_frag.f_page);
    		ic->i_frag.f_page = NULL;
    		ic->i_frag.f_offset = 0;
    	}
    
    	ret = 0;
    out:
    	return ret;
    }
    
    /*
     * This tries to allocate and post unused work requests after making sure that
     * they have all the allocations they need to queue received fragments into
     * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
     * pairs don't go unmatched.
     *
     * -1 is returned if posting fails due to temporary resource exhaustion.
     */
    int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
    		       gfp_t page_gfp, int prefill)
    {
    	struct rds_ib_connection *ic = conn->c_transport_data;
    	struct rds_ib_recv_work *recv;
    	struct ib_recv_wr *failed_wr;
    	unsigned int posted = 0;
    	int ret = 0;
    	u32 pos;
    
    
    	while ((prefill || rds_conn_up(conn)) &&
    	       rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
    
    		if (pos >= ic->i_recv_ring.w_nr) {
    			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
    					pos);
    			ret = -EINVAL;
    			break;
    		}
    
    		recv = &ic->i_recvs[pos];
    		ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
    		if (ret) {
    			ret = -1;
    			break;
    		}
    
    		/* XXX when can this fail? */
    		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
    		rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
    			 recv->r_ibinc, recv->r_frag->f_page,
    			 (long) recv->r_frag->f_mapped, ret);
    		if (ret) {
    			rds_ib_conn_error(conn, "recv post on "
    			       "%pI4 returned %d, disconnecting and "
    			       "reconnecting\n", &conn->c_faddr,
    			       ret);
    			ret = -1;
    			break;
    		}
    
    		posted++;
    	}
    
    	/* We're doing flow control - update the window. */
    	if (ic->i_flowctl && posted)
    		rds_ib_advertise_credits(conn, posted);
    
    	if (ret)
    		rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
    	return ret;
    }
    
    void rds_ib_inc_purge(struct rds_incoming *inc)
    {
    	struct rds_ib_incoming *ibinc;
    	struct rds_page_frag *frag;
    	struct rds_page_frag *pos;
    
    	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
    	rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
    
    	list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
    		list_del_init(&frag->f_item);
    		rds_ib_frag_drop_page(frag);
    		rds_ib_frag_free(frag);
    	}
    }
    
    void rds_ib_inc_free(struct rds_incoming *inc)
    {
    	struct rds_ib_incoming *ibinc;
    
    	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
    
    	rds_ib_inc_purge(inc);
    	rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
    	BUG_ON(!list_empty(&ibinc->ii_frags));
    	kmem_cache_free(rds_ib_incoming_slab, ibinc);
    	atomic_dec(&rds_ib_allocation);
    	BUG_ON(atomic_read(&rds_ib_allocation) < 0);
    }
    
    int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
    			    size_t size)
    {
    	struct rds_ib_incoming *ibinc;
    	struct rds_page_frag *frag;
    	struct iovec *iov = first_iov;
    	unsigned long to_copy;
    	unsigned long frag_off = 0;
    	unsigned long iov_off = 0;
    	int copied = 0;
    	int ret;
    	u32 len;
    
    	ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
    	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
    	len = be32_to_cpu(inc->i_hdr.h_len);
    
    	while (copied < size && copied < len) {
    		if (frag_off == RDS_FRAG_SIZE) {
    			frag = list_entry(frag->f_item.next,
    					  struct rds_page_frag, f_item);
    			frag_off = 0;
    		}
    		while (iov_off == iov->iov_len) {
    			iov_off = 0;
    			iov++;
    		}
    
    		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
    		to_copy = min_t(size_t, to_copy, size - copied);
    		to_copy = min_t(unsigned long, to_copy, len - copied);
    
    		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
    			 "[%p, %lu] + %lu\n",
    			 to_copy, iov->iov_base, iov->iov_len, iov_off,
    			 frag->f_page, frag->f_offset, frag_off);
    
    		/* XXX needs + offset for multiple recvs per page */
    		ret = rds_page_copy_to_user(frag->f_page,
    					    frag->f_offset + frag_off,
    					    iov->iov_base + iov_off,
    					    to_copy);
    		if (ret) {
    			copied = ret;
    			break;
    		}
    
    		iov_off += to_copy;
    		frag_off += to_copy;
    		copied += to_copy;
    	}
    
    	return copied;
    }
    
    /* ic starts out kzalloc()ed */
    void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
    {
    	struct ib_send_wr *wr = &ic->i_ack_wr;
    	struct ib_sge *sge = &ic->i_ack_sge;
    
    	sge->addr = ic->i_ack_dma;
    	sge->length = sizeof(struct rds_header);
    	sge->lkey = ic->i_mr->lkey;
    
    	wr->sg_list = sge;
    	wr->num_sge = 1;
    	wr->opcode = IB_WR_SEND;
    	wr->wr_id = RDS_IB_ACK_WR_ID;
    	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
    }
    
    /*
     * You'd think that with reliable IB connections you wouldn't need to ack
     * messages that have been received.  The problem is that IB hardware generates
     * an ack message before it has DMAed the message into memory.  This creates a
     * potential message loss if the HCA is disabled for any reason between when it
     * sends the ack and before the message is DMAed and processed.  This is only a
     * potential issue if another HCA is available for fail-over.
     *
     * When the remote host receives our ack they'll free the sent message from
     * their send queue.  To decrease the latency of this we always send an ack
     * immediately after we've received messages.
     *
     * For simplicity, we only have one ack in flight at a time.  This puts
     * pressure on senders to have deep enough send queues to absorb the latency of
     * a single ack frame being in flight.  This might not be good enough.
     *
     * This is implemented by have a long-lived send_wr and sge which point to a
     * statically allocated ack frame.  This ack wr does not fall under the ring
     * accounting that the tx and rx wrs do.  The QP attribute specifically makes
     * room for it beyond the ring size.  Send completion notices its special
     * wr_id and avoids working with the ring in that case.
     */
    
    #ifndef KERNEL_HAS_ATOMIC64
    
    static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
    				int ack_required)
    {
    
    	unsigned long flags;
    
    	spin_lock_irqsave(&ic->i_ack_lock, flags);
    	ic->i_ack_next = seq;
    	if (ack_required)
    		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
    }
    
    static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
    {
    	unsigned long flags;
    	u64 seq;
    
    	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    
    	spin_lock_irqsave(&ic->i_ack_lock, flags);
    	seq = ic->i_ack_next;
    	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
    
    	return seq;
    }
    #else
    static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
    				int ack_required)
    {
    	atomic64_set(&ic->i_ack_next, seq);
    
    	if (ack_required) {
    		smp_mb__before_clear_bit();
    		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    	}
    }
    
    static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
    {
    	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    	smp_mb__after_clear_bit();
    
    
    	return atomic64_read(&ic->i_ack_next);
    
    
    static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
    {
    	struct rds_header *hdr = ic->i_ack;
    	struct ib_send_wr *failed_wr;
    	u64 seq;
    	int ret;
    
    	seq = rds_ib_get_ack(ic);
    
    	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
    	rds_message_populate_header(hdr, 0, 0, 0);
    	hdr->h_ack = cpu_to_be64(seq);
    	hdr->h_credit = adv_credits;
    	rds_message_make_checksum(hdr);
    	ic->i_ack_queued = jiffies;
    
    	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
    	if (unlikely(ret)) {
    		/* Failed to send. Release the WR, and
    		 * force another ACK.
    		 */
    		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    
    		rds_ib_stats_inc(s_ib_ack_send_failure);
    		/* Need to finesse this later. */
    		BUG();
    	} else
    		rds_ib_stats_inc(s_ib_ack_sent);
    }
    
    /*
     * There are 3 ways of getting acknowledgements to the peer:
     *  1.	We call rds_ib_attempt_ack from the recv completion handler
     *	to send an ACK-only frame.
     *	However, there can be only one such frame in the send queue
     *	at any time, so we may have to postpone it.
     *  2.	When another (data) packet is transmitted while there's
     *	an ACK in the queue, we piggyback the ACK sequence number
     *	on the data packet.
     *  3.	If the ACK WR is done sending, we get called from the
     *	send queue completion handler, and check whether there's
     *	another ACK pending (postponed because the WR was on the
     *	queue). If so, we transmit it.
     *
     * We maintain 2 variables:
     *  -	i_ack_flags, which keeps track of whether the ACK WR
     *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
     *  -	i_ack_next, which is the last sequence number we received
     *
     * Potentially, send queue and receive queue handlers can run concurrently.
    
     * It would be nice to not have to use a spinlock to synchronize things,
     * but the one problem that rules this out is that 64bit updates are
     * not atomic on all platforms. Things would be a lot simpler if
     * we had atomic64 or maybe cmpxchg64 everywhere.
    
     *
     * Reconnecting complicates this picture just slightly. When we
     * reconnect, we may be seeing duplicate packets. The peer
     * is retransmitting them, because it hasn't seen an ACK for
     * them. It is important that we ACK these.
     *
     * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
     * this flag set *MUST* be acknowledged immediately.
     */
    
    /*
     * When we get here, we're called from the recv queue handler.
     * Check whether we ought to transmit an ACK.
     */
    void rds_ib_attempt_ack(struct rds_ib_connection *ic)
    {
    	unsigned int adv_credits;
    
    	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
    		return;
    
    	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
    		rds_ib_stats_inc(s_ib_ack_send_delayed);
    		return;
    	}
    
    	/* Can we get a send credit? */
    
    	if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
    
    		rds_ib_stats_inc(s_ib_tx_throttle);
    		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    		return;
    	}
    
    	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
    	rds_ib_send_ack(ic, adv_credits);
    }
    
    /*
     * We get here from the send completion handler, when the
     * adapter tells us the ACK frame was sent.
     */
    void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
    {
    	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
    	rds_ib_attempt_ack(ic);
    }
    
    /*
     * This is called by the regular xmit code when it wants to piggyback
     * an ACK on an outgoing frame.
     */
    u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
    {
    	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
    		rds_ib_stats_inc(s_ib_ack_send_piggybacked);
    	return rds_ib_get_ack(ic);
    }
    
    
    static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
    					    struct rds_ib_recv_work *recv,
    					    u32 data_len)
    {
    	struct rds_ib_connection *ic = conn->c_transport_data;
    	void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
    	void *addr;
    	u32 misplaced_hdr_bytes;
    
    	/*
    	 * Support header at the front (RDS 3.1+) as well as header-at-end.
    	 *
    	 * Cases:
    	 * 1) header all in header buff (great!)
    	 * 2) header all in data page (copy all to header buff)
    	 * 3) header split across hdr buf + data page
    	 *    (move bit in hdr buff to end before copying other bit from data page)
    	 */
    	if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
    	        return hdr_buff;
    
    	if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
    		addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
    		memcpy(hdr_buff,
    		       addr + recv->r_frag->f_offset + data_len,
    		       sizeof(struct rds_header));
    		kunmap_atomic(addr, KM_SOFTIRQ0);
    		return hdr_buff;
    	}
    
    	misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
    
    	memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
    
    	addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
    	memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
    	       sizeof(struct rds_header) - misplaced_hdr_bytes);
    	kunmap_atomic(addr, KM_SOFTIRQ0);
    	return hdr_buff;
    }
    
    
    /*
     * It's kind of lame that we're copying from the posted receive pages into
     * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
     * them.  But receiving new congestion bitmaps should be a *rare* event, so
     * hopefully we won't need to invest that complexity in making it more
     * efficient.  By copying we can share a simpler core with TCP which has to
     * copy.
     */
    static void rds_ib_cong_recv(struct rds_connection *conn,
    			      struct rds_ib_incoming *ibinc)
    {
    	struct rds_cong_map *map;
    	unsigned int map_off;
    	unsigned int map_page;
    	struct rds_page_frag *frag;
    	unsigned long frag_off;
    	unsigned long to_copy;
    	unsigned long copied;
    	uint64_t uncongested = 0;
    	void *addr;
    
    	/* catch completely corrupt packets */
    	if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
    		return;
    
    	map = conn->c_fcong;
    	map_page = 0;
    	map_off = 0;
    
    	frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
    	frag_off = 0;
    
    	copied = 0;
    
    	while (copied < RDS_CONG_MAP_BYTES) {
    		uint64_t *src, *dst;
    		unsigned int k;
    
    		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
    		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
    
    		addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
    
    		src = addr + frag_off;
    		dst = (void *)map->m_page_addrs[map_page] + map_off;
    		for (k = 0; k < to_copy; k += 8) {
    			/* Record ports that became uncongested, ie
    			 * bits that changed from 0 to 1. */
    			uncongested |= ~(*src) & *dst;
    			*dst++ = *src++;
    		}
    		kunmap_atomic(addr, KM_SOFTIRQ0);
    
    		copied += to_copy;
    
    		map_off += to_copy;
    		if (map_off == PAGE_SIZE) {
    			map_off = 0;
    			map_page++;
    		}
    
    		frag_off += to_copy;
    		if (frag_off == RDS_FRAG_SIZE) {
    			frag = list_entry(frag->f_item.next,
    					  struct rds_page_frag, f_item);
    			frag_off = 0;
    		}
    	}
    
    	/* the congestion map is in little endian order */
    	uncongested = le64_to_cpu(uncongested);
    
    	rds_cong_map_updated(map, uncongested);
    }
    
    /*
     * Rings are posted with all the allocations they'll need to queue the
     * incoming message to the receiving socket so this can't fail.
     * All fragments start with a header, so we can make sure we're not receiving
     * garbage, and we can tell a small 8 byte fragment from an ACK frame.
     */
    struct rds_ib_ack_state {
    	u64		ack_next;
    	u64		ack_recv;
    	unsigned int	ack_required:1;
    	unsigned int	ack_next_valid:1;
    	unsigned int	ack_recv_valid:1;
    };
    
    static void rds_ib_process_recv(struct rds_connection *conn,
    
    				struct rds_ib_recv_work *recv, u32 data_len,
    
    				struct rds_ib_ack_state *state)
    {
    	struct rds_ib_connection *ic = conn->c_transport_data;
    	struct rds_ib_incoming *ibinc = ic->i_ibinc;
    	struct rds_header *ihdr, *hdr;
    
    	/* XXX shut down the connection if port 0,0 are seen? */
    
    	rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
    
    	if (data_len < sizeof(struct rds_header)) {
    
    		rds_ib_conn_error(conn, "incoming message "
    		       "from %pI4 didn't inclue a "
    		       "header, disconnecting and "
    		       "reconnecting\n",
    		       &conn->c_faddr);
    		return;
    	}
    
    	data_len -= sizeof(struct rds_header);
    
    	ihdr = rds_ib_get_header(conn, recv, data_len);
    
    
    	/* Validate the checksum. */
    	if (!rds_message_verify_checksum(ihdr)) {
    		rds_ib_conn_error(conn, "incoming message "
    		       "from %pI4 has corrupted header - "
    		       "forcing a reconnect\n",
    		       &conn->c_faddr);
    		rds_stats_inc(s_recv_drop_bad_checksum);
    		return;
    	}
    
    	/* Process the ACK sequence which comes with every packet */
    	state->ack_recv = be64_to_cpu(ihdr->h_ack);
    	state->ack_recv_valid = 1;
    
    	/* Process the credits update if there was one */
    	if (ihdr->h_credit)
    		rds_ib_send_add_credits(conn, ihdr->h_credit);
    
    
    	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
    
    		/* This is an ACK-only packet. The fact that it gets
    		 * special treatment here is that historically, ACKs
    		 * were rather special beasts.
    		 */
    		rds_ib_stats_inc(s_ib_ack_received);
    
    		/*
    		 * Usually the frags make their way on to incs and are then freed as
    		 * the inc is freed.  We don't go that route, so we have to drop the
    		 * page ref ourselves.  We can't just leave the page on the recv
    		 * because that confuses the dma mapping of pages and each recv's use
    		 * of a partial page.  We can leave the frag, though, it will be
    		 * reused.
    		 *
    		 * FIXME: Fold this into the code path below.
    		 */
    		rds_ib_frag_drop_page(recv->r_frag);
    		return;
    	}
    
    	/*
    	 * If we don't already have an inc on the connection then this
    	 * fragment has a header and starts a message.. copy its header
    	 * into the inc and save the inc so we can hang upcoming fragments
    	 * off its list.
    	 */
    	if (ibinc == NULL) {
    		ibinc = recv->r_ibinc;
    		recv->r_ibinc = NULL;
    		ic->i_ibinc = ibinc;
    
    		hdr = &ibinc->ii_inc.i_hdr;
    		memcpy(hdr, ihdr, sizeof(*hdr));
    		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
    
    		rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
    			 ic->i_recv_data_rem, hdr->h_flags);
    	} else {
    		hdr = &ibinc->ii_inc.i_hdr;
    		/* We can't just use memcmp here; fragments of a
    		 * single message may carry different ACKs */
    
    		if (hdr->h_sequence != ihdr->h_sequence ||
    		    hdr->h_len != ihdr->h_len ||
    		    hdr->h_sport != ihdr->h_sport ||
    		    hdr->h_dport != ihdr->h_dport) {
    
    			rds_ib_conn_error(conn,
    				"fragment header mismatch; forcing reconnect\n");
    			return;
    		}
    	}
    
    	list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
    	recv->r_frag = NULL;
    
    	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
    		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
    	else {
    		ic->i_recv_data_rem = 0;
    		ic->i_ibinc = NULL;
    
    		if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
    			rds_ib_cong_recv(conn, ibinc);
    		else {
    			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
    					  &ibinc->ii_inc, GFP_ATOMIC,
    					  KM_SOFTIRQ0);
    			state->ack_next = be64_to_cpu(hdr->h_sequence);
    			state->ack_next_valid = 1;
    		}
    
    		/* Evaluate the ACK_REQUIRED flag *after* we received
    		 * the complete frame, and after bumping the next_rx
    		 * sequence. */
    		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
    			rds_stats_inc(s_recv_ack_required);
    			state->ack_required = 1;
    		}
    
    		rds_inc_put(&ibinc->ii_inc);
    	}
    }
    
    /*
     * Plucking the oldest entry from the ring can be done concurrently with
     * the thread refilling the ring.  Each ring operation is protected by
     * spinlocks and the transient state of refilling doesn't change the
     * recording of which entry is oldest.
     *
     * This relies on IB only calling one cq comp_handler for each cq so that
     * there will only be one caller of rds_recv_incoming() per RDS connection.
     */
    void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
    {
    	struct rds_connection *conn = context;
    	struct rds_ib_connection *ic = conn->c_transport_data;
    
    	rdsdebug("conn %p cq %p\n", conn, cq);
    
    	rds_ib_stats_inc(s_ib_rx_cq_call);
    
    
    	tasklet_schedule(&ic->i_recv_tasklet);
    }
    
    static inline void rds_poll_cq(struct rds_ib_connection *ic,
    			       struct rds_ib_ack_state *state)
    {
    	struct rds_connection *conn = ic->conn;
    	struct ib_wc wc;
    	struct rds_ib_recv_work *recv;
    
    	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
    
    		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
    			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
    			 be32_to_cpu(wc.ex.imm_data));
    		rds_ib_stats_inc(s_ib_rx_cq_event);
    
    		recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
    
    		rds_ib_recv_unmap_page(ic, recv);
    
    		/*
    		 * Also process recvs in connecting state because it is possible
    		 * to get a recv completion _before_ the rdmacm ESTABLISHED
    		 * event is processed.
    		 */
    		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
    			/* We expect errors as the qp is drained during shutdown */
    			if (wc.status == IB_WC_SUCCESS) {
    
    				rds_ib_process_recv(conn, recv, wc.byte_len, state);
    
    			} else {
    				rds_ib_conn_error(conn, "recv completion on "
    				       "%pI4 had status %u, disconnecting and "
    				       "reconnecting\n", &conn->c_faddr,
    				       wc.status);
    			}
    		}
    
    		rds_ib_ring_free(&ic->i_recv_ring, 1);
    	}
    
    }
    
    void rds_ib_recv_tasklet_fn(unsigned long data)
    {
    	struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
    	struct rds_connection *conn = ic->conn;
    	struct rds_ib_ack_state state = { 0, };
    
    	rds_poll_cq(ic, &state);
    	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
    	rds_poll_cq(ic, &state);
    
    
    	if (state.ack_next_valid)
    		rds_ib_set_ack(ic, state.ack_next, state.ack_required);
    	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
    		rds_send_drop_acked(conn, state.ack_recv, NULL);
    		ic->i_ack_recv = state.ack_recv;
    	}
    	if (rds_conn_up(conn))
    		rds_ib_attempt_ack(ic);
    
    	/* If we ever end up with a really empty receive ring, we're
    	 * in deep trouble, as the sender will definitely see RNR
    	 * timeouts. */
    	if (rds_ib_ring_empty(&ic->i_recv_ring))
    		rds_ib_stats_inc(s_ib_rx_ring_empty);
    
    	/*
    	 * If the ring is running low, then schedule the thread to refill.
    	 */
    	if (rds_ib_ring_low(&ic->i_recv_ring))
    		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
    }
    
    int rds_ib_recv(struct rds_connection *conn)
    {
    	struct rds_ib_connection *ic = conn->c_transport_data;
    	int ret = 0;
    
    	rdsdebug("conn %p\n", conn);
    
    	/*
    	 * If we get a temporary posting failure in this context then
    	 * we're really low and we want the caller to back off for a bit.
    	 */
    	mutex_lock(&ic->i_recv_mutex);
    	if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
    		ret = -ENOMEM;
    	else
    		rds_ib_stats_inc(s_ib_rx_refill_from_thread);
    	mutex_unlock(&ic->i_recv_mutex);
    
    	if (rds_conn_up(conn))
    		rds_ib_attempt_ack(ic);
    
    	return ret;
    }
    
    int __init rds_ib_recv_init(void)
    {
    	struct sysinfo si;
    	int ret = -ENOMEM;
    
    	/* Default to 30% of all available RAM for recv memory */
    	si_meminfo(&si);
    	rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
    
    	rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
    					sizeof(struct rds_ib_incoming),
    					0, 0, NULL);
    	if (rds_ib_incoming_slab == NULL)
    		goto out;
    
    	rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
    					sizeof(struct rds_page_frag),
    					0, 0, NULL);
    	if (rds_ib_frag_slab == NULL)
    		kmem_cache_destroy(rds_ib_incoming_slab);
    	else
    		ret = 0;
    out:
    	return ret;
    }
    
    void rds_ib_recv_exit(void)
    {
    	kmem_cache_destroy(rds_ib_incoming_slab);
    	kmem_cache_destroy(rds_ib_frag_slab);
    }