Skip to content
Snippets Groups Projects
commoncap.c 27.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Common capabilities, needed by capability.o and root_plug.o
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     *
     *	This program is free software; you can redistribute it and/or modify
     *	it under the terms of the GNU General Public License as published by
     *	the Free Software Foundation; either version 2 of the License, or
     *	(at your option) any later version.
     *
     */
    
    
    #include <linux/capability.h>
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    #include <linux/module.h>
    #include <linux/init.h>
    #include <linux/kernel.h>
    #include <linux/security.h>
    #include <linux/file.h>
    #include <linux/mm.h>
    #include <linux/mman.h>
    #include <linux/pagemap.h>
    #include <linux/swap.h>
    #include <linux/skbuff.h>
    #include <linux/netlink.h>
    #include <linux/ptrace.h>
    #include <linux/xattr.h>
    #include <linux/hugetlb.h>
    
    #include <linux/mount.h>
    
    #include <linux/prctl.h>
    #include <linux/securebits.h>
    
    /*
     * If a non-root user executes a setuid-root binary in
     * !secure(SECURE_NOROOT) mode, then we raise capabilities.
     * However if fE is also set, then the intent is for only
     * the file capabilities to be applied, and the setuid-root
     * bit is left on either to change the uid (plausible) or
     * to get full privilege on a kernel without file capabilities
     * support.  So in that case we do not raise capabilities.
     *
     * Warn if that happens, once per boot.
     */
    static void warn_setuid_and_fcaps_mixed(char *fname)
    {
    	static int warned;
    	if (!warned) {
    		printk(KERN_INFO "warning: `%s' has both setuid-root and"
    			" effective capabilities. Therefore not raising all"
    			" capabilities.\n", fname);
    		warned = 1;
    	}
    }
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
    {
    
    	NETLINK_CB(skb).eff_cap = current_cap();
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	return 0;
    }
    
    
    int cap_netlink_recv(struct sk_buff *skb, int cap)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		return -EPERM;
    	return 0;
    }
    EXPORT_SYMBOL(cap_netlink_recv);
    
    
    /**
     * cap_capable - Determine whether a task has a particular effective capability
     * @tsk: The task to query
    
     * @cap: The capability to check for
     * @audit: Whether to write an audit message or not
     *
     * Determine whether the nominated task has the specified capability amongst
     * its effective set, returning 0 if it does, -ve if it does not.
     *
    
     * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
     * and has_capability() functions.  That is, it has the reverse semantics:
     * cap_has_capability() returns 0 when a task has a capability, but the
     * kernel's capable() and has_capability() returns 1 for this case.
    
    int cap_capable(struct task_struct *tsk, const struct cred *cred, int cap,
    		int audit)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    }
    
    
    /**
     * cap_settime - Determine whether the current process may set the system clock
     * @ts: The time to set
     * @tz: The timezone to set
     *
     * Determine whether the current process may set the system clock and timezone
     * information, returning 0 if permission granted, -ve if denied.
     */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    int cap_settime(struct timespec *ts, struct timezone *tz)
    {
    	if (!capable(CAP_SYS_TIME))
    		return -EPERM;
    	return 0;
    }
    
    
     * cap_ptrace_access_check - Determine whether the current process may access
    
     *			   another
     * @child: The process to be accessed
     * @mode: The mode of attachment.
     *
     * Determine whether a process may access another, returning 0 if permission
     * granted, -ve if denied.
     */
    
    int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if (!cap_issubset(__task_cred(child)->cap_permitted,
    			  current_cred()->cap_permitted) &&
    
    	    !capable(CAP_SYS_PTRACE))
    		ret = -EPERM;
    	rcu_read_unlock();
    	return ret;
    
    /**
     * cap_ptrace_traceme - Determine whether another process may trace the current
     * @parent: The task proposed to be the tracer
     *
     * Determine whether the nominated task is permitted to trace the current
     * process, returning 0 if permission is granted, -ve if denied.
     */
    
    int cap_ptrace_traceme(struct task_struct *parent)
    {
    
    	if (!cap_issubset(current_cred()->cap_permitted,
    			  __task_cred(parent)->cap_permitted) &&
    
    	    !has_capability(parent, CAP_SYS_PTRACE))
    		ret = -EPERM;
    	rcu_read_unlock();
    	return ret;
    
    /**
     * cap_capget - Retrieve a task's capability sets
     * @target: The task from which to retrieve the capability sets
     * @effective: The place to record the effective set
     * @inheritable: The place to record the inheritable set
     * @permitted: The place to record the permitted set
     *
     * This function retrieves the capabilities of the nominated task and returns
     * them to the caller.
     */
    int cap_capget(struct task_struct *target, kernel_cap_t *effective,
    	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	/* Derived from kernel/capability.c:sys_capget. */
    
    	rcu_read_lock();
    	cred = __task_cred(target);
    
    	*effective   = cred->cap_effective;
    	*inheritable = cred->cap_inheritable;
    	*permitted   = cred->cap_permitted;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	return 0;
    }
    
    
    /*
     * Determine whether the inheritable capabilities are limited to the old
     * permitted set.  Returns 1 if they are limited, 0 if they are not.
     */
    
    static inline int cap_inh_is_capped(void)
    {
    
    #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
    
    	/* they are so limited unless the current task has the CAP_SETPCAP
    	 * capability
    	 */
    
    	if (cap_capable(current, current_cred(), CAP_SETPCAP,
    			SECURITY_CAP_AUDIT) == 0)
    
    		return 0;
    #endif
    	return 1;
    
    /**
     * cap_capset - Validate and apply proposed changes to current's capabilities
     * @new: The proposed new credentials; alterations should be made here
     * @old: The current task's current credentials
     * @effective: A pointer to the proposed new effective capabilities set
     * @inheritable: A pointer to the proposed new inheritable capabilities set
     * @permitted: A pointer to the proposed new permitted capabilities set
     *
     * This function validates and applies a proposed mass change to the current
     * process's capability sets.  The changes are made to the proposed new
     * credentials, and assuming no error, will be committed by the caller of LSM.
     */
    
    int cap_capset(struct cred *new,
    	       const struct cred *old,
    	       const kernel_cap_t *effective,
    	       const kernel_cap_t *inheritable,
    	       const kernel_cap_t *permitted)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if (cap_inh_is_capped() &&
    	    !cap_issubset(*inheritable,
    			  cap_combine(old->cap_inheritable,
    				      old->cap_permitted)))
    
    		/* incapable of using this inheritable set */
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		return -EPERM;
    
    	if (!cap_issubset(*inheritable,
    
    			  cap_combine(old->cap_inheritable,
    				      old->cap_bset)))
    
    		/* no new pI capabilities outside bounding set */
    		return -EPERM;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    	/* verify restrictions on target's new Permitted set */
    
    	if (!cap_issubset(*permitted, old->cap_permitted))
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		return -EPERM;
    
    	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
    
    	if (!cap_issubset(*effective, *permitted))
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		return -EPERM;
    
    
    	new->cap_effective   = *effective;
    	new->cap_inheritable = *inheritable;
    	new->cap_permitted   = *permitted;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	return 0;
    }
    
    
    /*
     * Clear proposed capability sets for execve().
     */
    
    static inline void bprm_clear_caps(struct linux_binprm *bprm)
    {
    
    	cap_clear(bprm->cred->cap_permitted);
    
    	bprm->cap_effective = false;
    }
    
    #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
    
    
    /**
     * cap_inode_need_killpriv - Determine if inode change affects privileges
     * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
     *
     * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
     * affects the security markings on that inode, and if it is, should
     * inode_killpriv() be invoked or the change rejected?
     *
     * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
     * -ve to deny the change.
     */
    
    int cap_inode_need_killpriv(struct dentry *dentry)
    {
    	struct inode *inode = dentry->d_inode;
    	int error;
    
    
    Al Viro's avatar
    Al Viro committed
    	if (!inode->i_op->getxattr)
    
    	       return 0;
    
    	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
    	if (error <= 0)
    		return 0;
    	return 1;
    }
    
    
    /**
     * cap_inode_killpriv - Erase the security markings on an inode
     * @dentry: The inode/dentry to alter
     *
     * Erase the privilege-enhancing security markings on an inode.
     *
     * Returns 0 if successful, -ve on error.
     */
    
    int cap_inode_killpriv(struct dentry *dentry)
    {
    	struct inode *inode = dentry->d_inode;
    
    
    Al Viro's avatar
    Al Viro committed
    	if (!inode->i_op->removexattr)
    
    	       return 0;
    
    	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
    }
    
    
    /*
     * Calculate the new process capability sets from the capability sets attached
     * to a file.
     */
    
    static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
    
    					  struct linux_binprm *bprm,
    					  bool *effective)
    
    	struct cred *new = bprm->cred;
    
    	unsigned i;
    	int ret = 0;
    
    	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
    
    
    	CAP_FOR_EACH_U32(i) {
    		__u32 permitted = caps->permitted.cap[i];
    		__u32 inheritable = caps->inheritable.cap[i];
    
    		/*
    		 * pP' = (X & fP) | (pI & fI)
    		 */
    
    		new->cap_permitted.cap[i] =
    			(new->cap_bset.cap[i] & permitted) |
    			(new->cap_inheritable.cap[i] & inheritable);
    
    		if (permitted & ~new->cap_permitted.cap[i])
    			/* insufficient to execute correctly */
    
    			ret = -EPERM;
    	}
    
    	/*
    	 * For legacy apps, with no internal support for recognizing they
    	 * do not have enough capabilities, we return an error if they are
    	 * missing some "forced" (aka file-permitted) capabilities.
    	 */
    
    /*
     * Extract the on-exec-apply capability sets for an executable file.
     */
    
    int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
    {
    	struct inode *inode = dentry->d_inode;
    
    	__u32 magic_etc;
    
    	unsigned tocopy, i;
    
    	int size;
    	struct vfs_cap_data caps;
    
    	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
    
    
    Al Viro's avatar
    Al Viro committed
    	if (!inode || !inode->i_op->getxattr)
    
    		return -ENODATA;
    
    	size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
    				   XATTR_CAPS_SZ);
    
    	if (size == -ENODATA || size == -EOPNOTSUPP)
    
    		/* no data, that's ok */
    		return -ENODATA;
    	if (size < 0)
    		return size;
    
    	if (size < sizeof(magic_etc))
    
    		return -EINVAL;
    
    
    	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
    
    	switch (magic_etc & VFS_CAP_REVISION_MASK) {
    
    	case VFS_CAP_REVISION_1:
    		if (size != XATTR_CAPS_SZ_1)
    			return -EINVAL;
    		tocopy = VFS_CAP_U32_1;
    		break;
    	case VFS_CAP_REVISION_2:
    		if (size != XATTR_CAPS_SZ_2)
    			return -EINVAL;
    		tocopy = VFS_CAP_U32_2;
    		break;
    
    	default:
    		return -EINVAL;
    	}
    
    		if (i >= tocopy)
    			break;
    		cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
    		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
    
    /*
     * Attempt to get the on-exec apply capability sets for an executable file from
     * its xattrs and, if present, apply them to the proposed credentials being
     * constructed by execve().
     */
    
    static int get_file_caps(struct linux_binprm *bprm, bool *effective)
    
    {
    	struct dentry *dentry;
    	int rc = 0;
    
    	bprm_clear_caps(bprm);
    
    
    	if (!file_caps_enabled)
    		return 0;
    
    
    	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
    
    		return 0;
    
    	dentry = dget(bprm->file->f_dentry);
    
    
    	rc = get_vfs_caps_from_disk(dentry, &vcaps);
    	if (rc < 0) {
    		if (rc == -EINVAL)
    			printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
    				__func__, rc, bprm->filename);
    		else if (rc == -ENODATA)
    			rc = 0;
    
    	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
    	if (rc == -EINVAL)
    		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
    		       __func__, rc, bprm->filename);
    
    
    out:
    	dput(dentry);
    	if (rc)
    		bprm_clear_caps(bprm);
    
    	return rc;
    }
    
    #else
    int cap_inode_need_killpriv(struct dentry *dentry)
    {
    	return 0;
    }
    
    int cap_inode_killpriv(struct dentry *dentry)
    {
    	return 0;
    }
    
    
    int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
    {
    	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
     	return -ENODATA;
    }
    
    
    static inline int get_file_caps(struct linux_binprm *bprm, bool *effective)
    
    {
    	bprm_clear_caps(bprm);
    	return 0;
    }
    #endif
    
    
     * Determine whether a exec'ing process's new permitted capabilities should be
     * limited to just what it already has.
     *
     * This prevents processes that are being ptraced from gaining access to
     * CAP_SETPCAP, unless the process they're tracing already has it, and the
     * binary they're executing has filecaps that elevate it.
     *
     *  Returns 1 if they should be limited, 0 if they are not.
     */
    static inline int cap_limit_ptraced_target(void)
    {
    #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
    	if (capable(CAP_SETPCAP))
    		return 0;
    #endif
    	return 1;
    }
    
    /**
     * cap_bprm_set_creds - Set up the proposed credentials for execve().
     * @bprm: The execution parameters, including the proposed creds
     *
     * Set up the proposed credentials for a new execution context being
     * constructed by execve().  The proposed creds in @bprm->cred is altered,
     * which won't take effect immediately.  Returns 0 if successful, -ve on error.
    
     */
    int cap_bprm_set_creds(struct linux_binprm *bprm)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	const struct cred *old = current_cred();
    	struct cred *new = bprm->cred;
    	bool effective;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    	effective = false;
    	ret = get_file_caps(bprm, &effective);
    	if (ret < 0)
    		return ret;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    		/*
    		 * If the legacy file capability is set, then don't set privs
    		 * for a setuid root binary run by a non-root user.  Do set it
    		 * for a root user just to cause least surprise to an admin.
    		 */
    		if (effective && new->uid != 0 && new->euid == 0) {
    			warn_setuid_and_fcaps_mixed(bprm->filename);
    			goto skip;
    		}
    
    		/*
    		 * To support inheritance of root-permissions and suid-root
    		 * executables under compatibility mode, we override the
    		 * capability sets for the file.
    		 *
    
    		 * If only the real uid is 0, we do not set the effective bit.
    
    		if (new->euid == 0 || new->uid == 0) {
    
    			new->cap_permitted = cap_combine(old->cap_bset,
    							 old->cap_inheritable);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		}
    
    		if (new->euid == 0)
    			effective = true;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	}
    
    	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
    	 * credentials unless they have the appropriate permit
    	 */
    	if ((new->euid != old->uid ||
    	     new->egid != old->gid ||
    	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
    	    bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
    		/* downgrade; they get no more than they had, and maybe less */
    		if (!capable(CAP_SETUID)) {
    			new->euid = new->uid;
    			new->egid = new->gid;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		}
    
    		if (cap_limit_ptraced_target())
    			new->cap_permitted = cap_intersect(new->cap_permitted,
    							   old->cap_permitted);
    
    	new->suid = new->fsuid = new->euid;
    	new->sgid = new->fsgid = new->egid;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    	/* For init, we want to retain the capabilities set in the initial
    	 * task.  Thus we skip the usual capability rules
    	 */
    
    	if (!is_global_init(current)) {
    
    		if (effective)
    			new->cap_effective = new->cap_permitted;
    
    			cap_clear(new->cap_effective);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	}
    
    	bprm->cap_effective = effective;
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    	/*
    	 * Audit candidate if current->cap_effective is set
    	 *
    	 * We do not bother to audit if 3 things are true:
    	 *   1) cap_effective has all caps
    	 *   2) we are root
    	 *   3) root is supposed to have all caps (SECURE_NOROOT)
    	 * Since this is just a normal root execing a process.
    	 *
    	 * Number 1 above might fail if you don't have a full bset, but I think
    	 * that is interesting information to audit.
    	 */
    
    	if (!cap_isclear(new->cap_effective)) {
    		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
    
    		    new->euid != 0 || new->uid != 0 ||
    		    issecure(SECURE_NOROOT)) {
    			ret = audit_log_bprm_fcaps(bprm, new, old);
    			if (ret < 0)
    				return ret;
    		}
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    
    
    	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
    
    /**
     * cap_bprm_secureexec - Determine whether a secure execution is required
     * @bprm: The execution parameters
     *
     * Determine whether a secure execution is required, return 1 if it is, and 0
     * if it is not.
     *
     * The credentials have been committed by this point, and so are no longer
     * available through @bprm->cred.
    
     */
    int cap_bprm_secureexec(struct linux_binprm *bprm)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	const struct cred *cred = current_cred();
    
    		if (bprm->cap_effective)
    			return 1;
    
    		if (!cap_isclear(cred->cap_permitted))
    
    	return (cred->euid != cred->uid ||
    		cred->egid != cred->gid);
    
    /**
     * cap_inode_setxattr - Determine whether an xattr may be altered
     * @dentry: The inode/dentry being altered
     * @name: The name of the xattr to be changed
     * @value: The value that the xattr will be changed to
     * @size: The size of value
     * @flags: The replacement flag
     *
     * Determine whether an xattr may be altered or set on an inode, returning 0 if
     * permission is granted, -ve if denied.
     *
     * This is used to make sure security xattrs don't get updated or set by those
     * who aren't privileged to do so.
     */
    
    int cap_inode_setxattr(struct dentry *dentry, const char *name,
    		       const void *value, size_t size, int flags)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if (!strcmp(name, XATTR_NAME_CAPS)) {
    		if (!capable(CAP_SETFCAP))
    			return -EPERM;
    		return 0;
    
    	}
    
    	if (!strncmp(name, XATTR_SECURITY_PREFIX,
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
    	    !capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	return 0;
    }
    
    
    /**
     * cap_inode_removexattr - Determine whether an xattr may be removed
     * @dentry: The inode/dentry being altered
     * @name: The name of the xattr to be changed
     *
     * Determine whether an xattr may be removed from an inode, returning 0 if
     * permission is granted, -ve if denied.
     *
     * This is used to make sure security xattrs don't get removed by those who
     * aren't privileged to remove them.
     */
    
    int cap_inode_removexattr(struct dentry *dentry, const char *name)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if (!strcmp(name, XATTR_NAME_CAPS)) {
    		if (!capable(CAP_SETFCAP))
    			return -EPERM;
    		return 0;
    
    	}
    
    	if (!strncmp(name, XATTR_SECURITY_PREFIX,
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
    	    !capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	return 0;
    }
    
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     * cap_emulate_setxuid() fixes the effective / permitted capabilities of
     * a process after a call to setuid, setreuid, or setresuid.
     *
     *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
     *  {r,e,s}uid != 0, the permitted and effective capabilities are
     *  cleared.
     *
     *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
     *  capabilities of the process are cleared.
     *
     *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
     *  capabilities are set to the permitted capabilities.
     *
    
     *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     *  never happen.
     *
    
    Linus Torvalds's avatar
    Linus Torvalds committed
     *
     * cevans - New behaviour, Oct '99
     * A process may, via prctl(), elect to keep its capabilities when it
     * calls setuid() and switches away from uid==0. Both permitted and
     * effective sets will be retained.
     * Without this change, it was impossible for a daemon to drop only some
     * of its privilege. The call to setuid(!=0) would drop all privileges!
     * Keeping uid 0 is not an option because uid 0 owns too many vital
     * files..
     * Thanks to Olaf Kirch and Peter Benie for spotting this.
     */
    
    static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    
    	if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
    	    (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
    
    	    !issecure(SECURE_KEEP_CAPS)) {
    
    		cap_clear(new->cap_permitted);
    		cap_clear(new->cap_effective);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	}
    
    	if (old->euid == 0 && new->euid != 0)
    		cap_clear(new->cap_effective);
    	if (old->euid != 0 && new->euid == 0)
    		new->cap_effective = new->cap_permitted;
    
    /**
     * cap_task_fix_setuid - Fix up the results of setuid() call
     * @new: The proposed credentials
     * @old: The current task's current credentials
     * @flags: Indications of what has changed
     *
     * Fix up the results of setuid() call before the credential changes are
     * actually applied, returning 0 to grant the changes, -ve to deny them.
     */
    
    int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	switch (flags) {
    	case LSM_SETID_RE:
    	case LSM_SETID_ID:
    	case LSM_SETID_RES:
    
    		/* juggle the capabilities to follow [RES]UID changes unless
    		 * otherwise suppressed */
    
    		if (!issecure(SECURE_NO_SETUID_FIXUP))
    			cap_emulate_setxuid(new, old);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		break;
    
    
    	case LSM_SETID_FS:
    		/* juggle the capabilties to follow FSUID changes, unless
    		 * otherwise suppressed
    		 *
    
    		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
    		 *          if not, we might be a bit too harsh here.
    		 */
    		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
    
    			if (old->fsuid == 0 && new->fsuid != 0)
    
    				new->cap_effective =
    					cap_drop_fs_set(new->cap_effective);
    
    
    			if (old->fsuid != 0 && new->fsuid == 0)
    
    				new->cap_effective =
    					cap_raise_fs_set(new->cap_effective,
    							 new->cap_permitted);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		}
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    	default:
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    
    #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
    /*
     * Rationale: code calling task_setscheduler, task_setioprio, and
     * task_setnice, assumes that
     *   . if capable(cap_sys_nice), then those actions should be allowed
     *   . if not capable(cap_sys_nice), but acting on your own processes,
     *   	then those actions should be allowed
     * This is insufficient now since you can call code without suid, but
     * yet with increased caps.
     * So we check for increased caps on the target process.
     */
    
    static int cap_safe_nice(struct task_struct *p)
    
    	int is_subset;
    
    	rcu_read_lock();
    	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
    				 current_cred()->cap_permitted);
    	rcu_read_unlock();
    
    	if (!is_subset && !capable(CAP_SYS_NICE))
    
    		return -EPERM;
    	return 0;
    }
    
    
    /**
     * cap_task_setscheduler - Detemine if scheduler policy change is permitted
     * @p: The task to affect
     * @policy: The policy to effect
     * @lp: The parameters to the scheduling policy
     *
     * Detemine if the requested scheduler policy change is permitted for the
     * specified task, returning 0 if permission is granted, -ve if denied.
     */
    int cap_task_setscheduler(struct task_struct *p, int policy,
    
    			   struct sched_param *lp)
    {
    	return cap_safe_nice(p);
    }
    
    
    /**
     * cap_task_ioprio - Detemine if I/O priority change is permitted
     * @p: The task to affect
     * @ioprio: The I/O priority to set
     *
     * Detemine if the requested I/O priority change is permitted for the specified
     * task, returning 0 if permission is granted, -ve if denied.
     */
    int cap_task_setioprio(struct task_struct *p, int ioprio)
    
    {
    	return cap_safe_nice(p);
    }
    
    
    /**
     * cap_task_ioprio - Detemine if task priority change is permitted
     * @p: The task to affect
     * @nice: The nice value to set
     *
     * Detemine if the requested task priority change is permitted for the
     * specified task, returning 0 if permission is granted, -ve if denied.
     */
    int cap_task_setnice(struct task_struct *p, int nice)
    
    {
    	return cap_safe_nice(p);
    }
    
    
     * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
     * the current task's bounding set.  Returns 0 on success, -ve on error.
    
    static long cap_prctl_drop(struct cred *new, unsigned long cap)
    
    {
    	if (!capable(CAP_SETPCAP))
    		return -EPERM;
    	if (!cap_valid(cap))
    		return -EINVAL;
    
    
    	cap_lower(new->cap_bset, cap);
    
    #else
    int cap_task_setscheduler (struct task_struct *p, int policy,
    			   struct sched_param *lp)
    {
    	return 0;
    }
    int cap_task_setioprio (struct task_struct *p, int ioprio)
    {
    	return 0;
    }
    int cap_task_setnice (struct task_struct *p, int nice)
    {
    	return 0;
    }
    #endif
    
    
    /**
     * cap_task_prctl - Implement process control functions for this security module
     * @option: The process control function requested
     * @arg2, @arg3, @arg4, @arg5: The argument data for this function
     *
     * Allow process control functions (sys_prctl()) to alter capabilities; may
     * also deny access to other functions not otherwise implemented here.
     *
     * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
     * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
     * modules will consider performing the function.
     */
    
    int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
    
    		   unsigned long arg4, unsigned long arg5)
    
    	struct cred *new;
    
    	new = prepare_creds();
    	if (!new)
    		return -ENOMEM;
    
    
    	switch (option) {
    	case PR_CAPBSET_READ:
    
    		error = -EINVAL;
    
    		if (!cap_valid(arg2))
    
    			goto error;
    		error = !!cap_raised(new->cap_bset, arg2);
    		goto no_change;
    
    
    #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
    	case PR_CAPBSET_DROP:
    
    		error = cap_prctl_drop(new, arg2);
    		if (error < 0)
    			goto error;
    		goto changed;
    
    
    	/*
    	 * The next four prctl's remain to assist with transitioning a
    	 * system from legacy UID=0 based privilege (when filesystem
    	 * capabilities are not in use) to a system using filesystem
    	 * capabilities only - as the POSIX.1e draft intended.
    	 *
    	 * Note:
    	 *
    	 *  PR_SET_SECUREBITS =
    	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
    	 *    | issecure_mask(SECURE_NOROOT)
    	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
    	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
    	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
    	 *
    	 * will ensure that the current process and all of its
    	 * children will be locked into a pure
    	 * capability-based-privilege environment.
    	 */
    	case PR_SET_SECUREBITS:
    
    		error = -EPERM;
    		if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
    		     & (new->securebits ^ arg2))			/*[1]*/
    		    || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
    		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
    
    		    || (cap_capable(current, current_cred(), CAP_SETPCAP,
    				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
    
    			/*
    			 * [1] no changing of bits that are locked
    			 * [2] no unlocking of locks
    			 * [3] no setting of unsupported bits
    			 * [4] doing anything requires privilege (go read about
    			 *     the "sendmail capabilities bug")
    			 */
    
    		    )
    			/* cannot change a locked bit */
    			goto error;
    		new->securebits = arg2;
    		goto changed;
    
    
    	case PR_GET_SECUREBITS:
    
    		error = new->securebits;
    		goto no_change;
    
    
    #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
    
    	case PR_GET_KEEPCAPS:
    		if (issecure(SECURE_KEEP_CAPS))
    			error = 1;
    
    		goto no_change;
    
    
    	case PR_SET_KEEPCAPS:
    
    		error = -EINVAL;
    
    		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
    
    			goto error;
    		error = -EPERM;
    		if (issecure(SECURE_KEEP_CAPS_LOCKED))
    			goto error;
    		if (arg2)
    			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
    
    			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
    		goto changed;
    
    
    	default:
    		/* No functionality available - continue with default */
    
    		error = -ENOSYS;
    		goto error;
    
    	}
    
    	/* Functionality provided */
    
    changed:
    	return commit_creds(new);
    
    no_change:
    error:
    	abort_creds(new);
    	return error;
    
    /**
     * cap_syslog - Determine whether syslog function is permitted
     * @type: Function requested
     *
     * Determine whether the current process is permitted to use a particular
     * syslog function, returning 0 if permission is granted, -ve if not.
     */
    int cap_syslog(int type)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
    		return -EPERM;
    	return 0;
    }
    
    
    /**
     * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
     * @mm: The VM space in which the new mapping is to be made
     * @pages: The size of the mapping
     *
     * Determine whether the allocation of a new virtual mapping by the current
     * task is permitted, returning 0 if permission is granted, -ve if not.
     */
    
    int cap_vm_enough_memory(struct mm_struct *mm, long pages)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    {
    	int cap_sys_admin = 0;
    
    
    	if (cap_capable(current, current_cred(), CAP_SYS_ADMIN,
    			SECURITY_CAP_NOAUDIT) == 0)
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    		cap_sys_admin = 1;
    
    	return __vm_enough_memory(mm, pages, cap_sys_admin);
    
    Linus Torvalds's avatar
    Linus Torvalds committed
    }
    
    
    /*
     * cap_file_mmap - check if able to map given addr
     * @file: unused
     * @reqprot: unused
     * @prot: unused
     * @flags: unused
     * @addr: address attempting to be mapped
     * @addr_only: unused
     *
     * If the process is attempting to map memory below mmap_min_addr they need
     * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
     * capability security module.  Returns 0 if this mapping should be allowed
     * -EPERM if not.