Skip to content
Snippets Groups Projects
session.c 44.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • #define _FILE_OFFSET_BITS 64
    
    
    #include <linux/kernel.h>
    
    
    #include <unistd.h>
    #include <sys/types.h>
    
    #include <sys/mman.h>
    
    #include "evlist.h"
    #include "evsel.h"
    
    #include "session.h"
    
    #include "perf_regs.h"
    
    #include "vdso.h"
    
    
    static int perf_session__open(struct perf_session *self, bool force)
    {
    	struct stat input_stat;
    
    
    	if (!strcmp(self->filename, "-")) {
    		self->fd_pipe = true;
    		self->fd = STDIN_FILENO;
    
    
    		if (perf_session__read_header(self, self->fd) < 0)
    
    			pr_err("incompatible file format (rerun with -v to learn more)");
    
    	self->fd = open(self->filename, O_RDONLY);
    
    		int err = errno;
    
    		pr_err("failed to open %s: %s", self->filename, strerror(err));
    		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
    
    			pr_err("  (try 'perf record' first)");
    		pr_err("\n");
    		return -errno;
    	}
    
    	if (fstat(self->fd, &input_stat) < 0)
    		goto out_close;
    
    	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
    		pr_err("file %s not owned by current user or root\n",
    		       self->filename);
    		goto out_close;
    	}
    
    	if (!input_stat.st_size) {
    		pr_info("zero-sized file (%s), nothing to do!\n",
    			self->filename);
    		goto out_close;
    	}
    
    
    	if (perf_session__read_header(self, self->fd) < 0) {
    
    		pr_err("incompatible file format (rerun with -v to learn more)");
    
    	if (!perf_evlist__valid_sample_type(self->evlist)) {
    		pr_err("non matching sample_type");
    		goto out_close;
    	}
    
    	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
    		pr_err("non matching sample_id_all");
    		goto out_close;
    	}
    
    
    	self->size = input_stat.st_size;
    	return 0;
    
    out_close:
    	close(self->fd);
    	self->fd = -1;
    	return -1;
    }
    
    
    void perf_session__set_id_hdr_size(struct perf_session *session)
    
    	u16 id_hdr_size = perf_evlist__id_hdr_size(session->evlist);
    
    	session->host_machine.id_hdr_size = id_hdr_size;
    	machines__set_id_hdr_size(&session->machines, id_hdr_size);
    
    int perf_session__create_kernel_maps(struct perf_session *self)
    {
    
    	int ret = machine__create_kernel_maps(&self->host_machine);
    
    		ret = machines__create_guest_kernel_maps(&self->machines);
    
    static void perf_session__destroy_kernel_maps(struct perf_session *self)
    {
    	machine__destroy_kernel_maps(&self->host_machine);
    	machines__destroy_guest_kernel_maps(&self->machines);
    }
    
    
    struct perf_session *perf_session__new(const char *filename, int mode,
    				       bool force, bool repipe,
    
    	struct perf_session *self;
    	struct stat st;
    	size_t len;
    
    	if (!filename || !strlen(filename)) {
    		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
    			filename = "-";
    		else
    			filename = "perf.data";
    	}
    
    	len = strlen(filename);
    	self = zalloc(sizeof(*self) + len);
    
    
    	if (self == NULL)
    		goto out;
    
    	memcpy(self->filename, filename, len);
    
    	/*
    	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
    	 * slices. On 32bit we use 32MB.
    	 */
    #if BITS_PER_LONG == 64
    	self->mmap_window = ULLONG_MAX;
    #else
    	self->mmap_window = 32 * 1024 * 1024ULL;
    #endif
    
    	self->machines = RB_ROOT;
    
    	self->repipe = repipe;
    
    	INIT_LIST_HEAD(&self->ordered_samples.samples);
    
    	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
    
    	INIT_LIST_HEAD(&self->ordered_samples.to_free);
    
    	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
    
    	hists__init(&self->hists);
    
    	if (mode == O_RDONLY) {
    		if (perf_session__open(self, force) < 0)
    			goto out_delete;
    
    		perf_session__set_id_hdr_size(self);
    
    	} else if (mode == O_WRONLY) {
    		/*
    		 * In O_RDONLY mode this will be performed when reading the
    
    		 * kernel MMAP event, in perf_event__process_mmap().
    
    		 */
    		if (perf_session__create_kernel_maps(self) < 0)
    			goto out_delete;
    	}
    
    	if (tool && tool->ordering_requires_timestamps &&
    
    	    tool->ordered_samples && !perf_evlist__sample_id_all(self->evlist)) {
    
    		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
    
    		tool->ordered_samples = false;
    
    out_delete:
    	perf_session__delete(self);
    	return NULL;
    
    static void machine__delete_dead_threads(struct machine *machine)
    
    	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
    
    static void perf_session__delete_dead_threads(struct perf_session *session)
    {
    	machine__delete_dead_threads(&session->host_machine);
    }
    
    static void machine__delete_threads(struct machine *self)
    
    {
    	struct rb_node *nd = rb_first(&self->threads);
    
    	while (nd) {
    		struct thread *t = rb_entry(nd, struct thread, rb_node);
    
    		rb_erase(&t->rb_node, &self->threads);
    		nd = rb_next(nd);
    		thread__delete(t);
    	}
    }
    
    
    static void perf_session__delete_threads(struct perf_session *session)
    {
    	machine__delete_threads(&session->host_machine);
    }
    
    
    void perf_session__delete(struct perf_session *self)
    {
    
    	perf_session__destroy_kernel_maps(self);
    
    	perf_session__delete_dead_threads(self);
    	perf_session__delete_threads(self);
    	machine__exit(&self->host_machine);
    
    	close(self->fd);
    	free(self);
    
    	vdso__exit();
    
    void machine__remove_thread(struct machine *self, struct thread *th)
    
    	rb_erase(&th->rb_node, &self->threads);
    	/*
    	 * We may have references to this thread, for instance in some hist_entry
    	 * instances, so just move them to a separate list.
    	 */
    	list_add_tail(&th->node, &self->dead_threads);
    }
    
    
    static bool symbol__match_parent_regex(struct symbol *sym)
    {
    	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
    		return 1;
    
    	return 0;
    }
    
    
    static const u8 cpumodes[] = {
    	PERF_RECORD_MISC_USER,
    	PERF_RECORD_MISC_KERNEL,
    	PERF_RECORD_MISC_GUEST_USER,
    	PERF_RECORD_MISC_GUEST_KERNEL
    };
    #define NCPUMODES (sizeof(cpumodes)/sizeof(u8))
    
    static void ip__resolve_ams(struct machine *self, struct thread *thread,
    			    struct addr_map_symbol *ams,
    			    u64 ip)
    {
    	struct addr_location al;
    	size_t i;
    	u8 m;
    
    	memset(&al, 0, sizeof(al));
    
    	for (i = 0; i < NCPUMODES; i++) {
    		m = cpumodes[i];
    		/*
    		 * We cannot use the header.misc hint to determine whether a
    		 * branch stack address is user, kernel, guest, hypervisor.
    		 * Branches may straddle the kernel/user/hypervisor boundaries.
    		 * Thus, we have to try consecutively until we find a match
    		 * or else, the symbol is unknown
    		 */
    		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
    				ip, &al, NULL);
    		if (al.sym)
    			goto found;
    	}
    found:
    	ams->addr = ip;
    
    	ams->al_addr = al.addr;
    
    	ams->sym = al.sym;
    	ams->map = al.map;
    }
    
    struct branch_info *machine__resolve_bstack(struct machine *self,
    					    struct thread *thr,
    					    struct branch_stack *bs)
    {
    	struct branch_info *bi;
    	unsigned int i;
    
    	bi = calloc(bs->nr, sizeof(struct branch_info));
    	if (!bi)
    		return NULL;
    
    	for (i = 0; i < bs->nr; i++) {
    		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
    		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
    		bi[i].flags = bs->entries[i].flags;
    	}
    	return bi;
    }
    
    
    static int machine__resolve_callchain_sample(struct machine *machine,
    					     struct thread *thread,
    					     struct ip_callchain *chain,
    					     struct symbol **parent)
    
    
    {
    	u8 cpumode = PERF_RECORD_MISC_USER;
    	unsigned int i;
    
    	callchain_cursor_reset(&callchain_cursor);
    
    	if (chain->nr > PERF_MAX_STACK_DEPTH) {
    		pr_warning("corrupted callchain. skipping...\n");
    		return 0;
    	}
    
    
    	for (i = 0; i < chain->nr; i++) {
    
    		struct addr_location al;
    
    
    		if (callchain_param.order == ORDER_CALLEE)
    			ip = chain->ips[i];
    		else
    			ip = chain->ips[chain->nr - i - 1];
    
    
    		if (ip >= PERF_CONTEXT_MAX) {
    			switch (ip) {
    			case PERF_CONTEXT_HV:
    
    				cpumode = PERF_RECORD_MISC_HYPERVISOR;
    				break;
    
    			case PERF_CONTEXT_KERNEL:
    
    				cpumode = PERF_RECORD_MISC_KERNEL;
    				break;
    
    			case PERF_CONTEXT_USER:
    
    				cpumode = PERF_RECORD_MISC_USER;
    				break;
    
    				pr_debug("invalid callchain context: "
    					 "%"PRId64"\n", (s64) ip);
    				/*
    				 * It seems the callchain is corrupted.
    				 * Discard all.
    				 */
    				callchain_cursor_reset(&callchain_cursor);
    				return 0;
    
    		thread__find_addr_location(thread, machine, cpumode,
    
    		if (al.sym != NULL) {
    			if (sort__has_parent && !*parent &&
    			    symbol__match_parent_regex(al.sym))
    				*parent = al.sym;
    
    			if (!symbol_conf.use_callchain)
    
    		err = callchain_cursor_append(&callchain_cursor,
    
    					      ip, al.map, al.sym);
    		if (err)
    			return err;
    
    static int unwind_entry(struct unwind_entry *entry, void *arg)
    {
    	struct callchain_cursor *cursor = arg;
    	return callchain_cursor_append(cursor, entry->ip,
    				       entry->map, entry->sym);
    }
    
    int machine__resolve_callchain(struct machine *machine,
    			       struct perf_evsel *evsel,
    			       struct thread *thread,
    			       struct perf_sample *sample,
    			       struct symbol **parent)
    
    {
    	int ret;
    
    	callchain_cursor_reset(&callchain_cursor);
    
    	ret = machine__resolve_callchain_sample(machine, thread,
    						sample->callchain, parent);
    	if (ret)
    		return ret;
    
    	/* Can we do dwarf post unwind? */
    	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
    	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
    		return 0;
    
    
    	/* Bail out if nothing was captured. */
    	if ((!sample->user_regs.regs) ||
    	    (!sample->user_stack.size))
    		return 0;
    
    
    	return unwind__get_entries(unwind_entry, &callchain_cursor, machine,
    				   thread, evsel->attr.sample_regs_user,
    				   sample);
    
    }
    
    
    static int process_event_synth_tracing_data_stub(union perf_event *event
    						 __maybe_unused,
    						 struct perf_session *session
    						__maybe_unused)
    
    static int process_event_synth_attr_stub(union perf_event *event __maybe_unused,
    					 struct perf_evlist **pevlist
    					 __maybe_unused)
    
    static int process_event_sample_stub(struct perf_tool *tool __maybe_unused,
    				     union perf_event *event __maybe_unused,
    				     struct perf_sample *sample __maybe_unused,
    				     struct perf_evsel *evsel __maybe_unused,
    				     struct machine *machine __maybe_unused)
    
    {
    	dump_printf(": unhandled!\n");
    	return 0;
    }
    
    
    static int process_event_stub(struct perf_tool *tool __maybe_unused,
    			      union perf_event *event __maybe_unused,
    			      struct perf_sample *sample __maybe_unused,
    			      struct machine *machine __maybe_unused)
    
    static int process_finished_round_stub(struct perf_tool *tool __maybe_unused,
    				       union perf_event *event __maybe_unused,
    				       struct perf_session *perf_session
    				       __maybe_unused)
    
    static int process_event_type_stub(struct perf_tool *tool __maybe_unused,
    				   union perf_event *event __maybe_unused)
    
    static int process_finished_round(struct perf_tool *tool,
    
    				  union perf_event *event,
    				  struct perf_session *session);
    
    static void perf_tool__fill_defaults(struct perf_tool *tool)
    
    	if (tool->sample == NULL)
    		tool->sample = process_event_sample_stub;
    	if (tool->mmap == NULL)
    		tool->mmap = process_event_stub;
    	if (tool->comm == NULL)
    		tool->comm = process_event_stub;
    	if (tool->fork == NULL)
    		tool->fork = process_event_stub;
    	if (tool->exit == NULL)
    		tool->exit = process_event_stub;
    	if (tool->lost == NULL)
    		tool->lost = perf_event__process_lost;
    	if (tool->read == NULL)
    		tool->read = process_event_sample_stub;
    	if (tool->throttle == NULL)
    		tool->throttle = process_event_stub;
    	if (tool->unthrottle == NULL)
    		tool->unthrottle = process_event_stub;
    	if (tool->attr == NULL)
    		tool->attr = process_event_synth_attr_stub;
    	if (tool->event_type == NULL)
    		tool->event_type = process_event_type_stub;
    	if (tool->tracing_data == NULL)
    		tool->tracing_data = process_event_synth_tracing_data_stub;
    	if (tool->build_id == NULL)
    		tool->build_id = process_finished_round_stub;
    	if (tool->finished_round == NULL) {
    		if (tool->ordered_samples)
    			tool->finished_round = process_finished_round;
    
    			tool->finished_round = process_finished_round_stub;
    
     
    void mem_bswap_32(void *src, int byte_size)
    {
    	u32 *m = src;
    	while (byte_size > 0) {
    		*m = bswap_32(*m);
    		byte_size -= sizeof(u32);
    		++m;
    	}
    }
    
    void mem_bswap_64(void *src, int byte_size)
    {
    	u64 *m = src;
    
    	while (byte_size > 0) {
    		*m = bswap_64(*m);
    		byte_size -= sizeof(u64);
    		++m;
    	}
    }
    
    
    static void swap_sample_id_all(union perf_event *event, void *data)
    {
    	void *end = (void *) event + event->header.size;
    	int size = end - data;
    
    	BUG_ON(size % sizeof(u64));
    	mem_bswap_64(data, size);
    }
    
    static void perf_event__all64_swap(union perf_event *event,
    
    				   bool sample_id_all __maybe_unused)
    
    	struct perf_event_header *hdr = &event->header;
    	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
    
    static void perf_event__comm_swap(union perf_event *event, bool sample_id_all)
    
    	event->comm.pid = bswap_32(event->comm.pid);
    	event->comm.tid = bswap_32(event->comm.tid);
    
    
    	if (sample_id_all) {
    		void *data = &event->comm.comm;
    
    
    		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
    
    		swap_sample_id_all(event, data);
    	}
    
    static void perf_event__mmap_swap(union perf_event *event,
    				  bool sample_id_all)
    
    	event->mmap.pid	  = bswap_32(event->mmap.pid);
    	event->mmap.tid	  = bswap_32(event->mmap.tid);
    	event->mmap.start = bswap_64(event->mmap.start);
    	event->mmap.len	  = bswap_64(event->mmap.len);
    	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
    
    
    	if (sample_id_all) {
    		void *data = &event->mmap.filename;
    
    
    		data += PERF_ALIGN(strlen(data) + 1, sizeof(u64));
    
    		swap_sample_id_all(event, data);
    	}
    
    static void perf_event__task_swap(union perf_event *event, bool sample_id_all)
    
    	event->fork.pid	 = bswap_32(event->fork.pid);
    	event->fork.tid	 = bswap_32(event->fork.tid);
    	event->fork.ppid = bswap_32(event->fork.ppid);
    	event->fork.ptid = bswap_32(event->fork.ptid);
    	event->fork.time = bswap_64(event->fork.time);
    
    
    	if (sample_id_all)
    		swap_sample_id_all(event, &event->fork + 1);
    
    static void perf_event__read_swap(union perf_event *event, bool sample_id_all)
    
    	event->read.pid		 = bswap_32(event->read.pid);
    	event->read.tid		 = bswap_32(event->read.tid);
    	event->read.value	 = bswap_64(event->read.value);
    	event->read.time_enabled = bswap_64(event->read.time_enabled);
    	event->read.time_running = bswap_64(event->read.time_running);
    	event->read.id		 = bswap_64(event->read.id);
    
    
    	if (sample_id_all)
    		swap_sample_id_all(event, &event->read + 1);
    
    static u8 revbyte(u8 b)
    {
    	int rev = (b >> 4) | ((b & 0xf) << 4);
    	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
    	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
    	return (u8) rev;
    }
    
    /*
     * XXX this is hack in attempt to carry flags bitfield
     * throught endian village. ABI says:
     *
     * Bit-fields are allocated from right to left (least to most significant)
     * on little-endian implementations and from left to right (most to least
     * significant) on big-endian implementations.
     *
     * The above seems to be byte specific, so we need to reverse each
     * byte of the bitfield. 'Internet' also says this might be implementation
     * specific and we probably need proper fix and carry perf_event_attr
     * bitfield flags in separate data file FEAT_ section. Thought this seems
     * to work for now.
     */
    static void swap_bitfield(u8 *p, unsigned len)
    {
    	unsigned i;
    
    	for (i = 0; i < len; i++) {
    		*p = revbyte(*p);
    		p++;
    	}
    }
    
    
    /* exported for swapping attributes in file header */
    void perf_event__attr_swap(struct perf_event_attr *attr)
    {
    	attr->type		= bswap_32(attr->type);
    	attr->size		= bswap_32(attr->size);
    	attr->config		= bswap_64(attr->config);
    	attr->sample_period	= bswap_64(attr->sample_period);
    	attr->sample_type	= bswap_64(attr->sample_type);
    	attr->read_format	= bswap_64(attr->read_format);
    	attr->wakeup_events	= bswap_32(attr->wakeup_events);
    	attr->bp_type		= bswap_32(attr->bp_type);
    	attr->bp_addr		= bswap_64(attr->bp_addr);
    	attr->bp_len		= bswap_64(attr->bp_len);
    
    
    	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
    
    static void perf_event__hdr_attr_swap(union perf_event *event,
    
    				      bool sample_id_all __maybe_unused)
    
    	perf_event__attr_swap(&event->attr.attr);
    
    	size = event->header.size;
    	size -= (void *)&event->attr.id - (void *)event;
    	mem_bswap_64(event->attr.id, size);
    
    static void perf_event__event_type_swap(union perf_event *event,
    
    					bool sample_id_all __maybe_unused)
    
    	event->event_type.event_type.event_id =
    		bswap_64(event->event_type.event_type.event_id);
    
    static void perf_event__tracing_data_swap(union perf_event *event,
    
    					  bool sample_id_all __maybe_unused)
    
    	event->tracing_data.size = bswap_32(event->tracing_data.size);
    
    typedef void (*perf_event__swap_op)(union perf_event *event,
    				    bool sample_id_all);
    
    static perf_event__swap_op perf_event__swap_ops[] = {
    	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
    	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
    	[PERF_RECORD_FORK]		  = perf_event__task_swap,
    	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
    	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
    	[PERF_RECORD_READ]		  = perf_event__read_swap,
    	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
    
    	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
    
    	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
    	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
    	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
    	[PERF_RECORD_HEADER_MAX]	  = NULL,
    
    static void perf_session_free_sample_buffers(struct perf_session *session)
    {
    	struct ordered_samples *os = &session->ordered_samples;
    
    
    	while (!list_empty(&os->to_free)) {
    
    		struct sample_queue *sq;
    
    
    		sq = list_entry(os->to_free.next, struct sample_queue, list);
    
    		list_del(&sq->list);
    		free(sq);
    	}
    }
    
    
    static int perf_session_deliver_event(struct perf_session *session,
    
    static int flush_sample_queue(struct perf_session *s,
    
    	struct ordered_samples *os = &s->ordered_samples;
    	struct list_head *head = &os->samples;
    
    	u64 limit = os->next_flush;
    	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
    
    	unsigned idx = 0, progress_next = os->nr_samples / 16;
    
    	if (!tool->ordered_samples || !limit)
    
    
    	list_for_each_entry_safe(iter, tmp, head, list) {
    		if (iter->timestamp > limit)
    
    		ret = perf_evlist__parse_sample(s->evlist, iter->event, &sample,
    						s->header.needs_swap);
    
    		if (ret)
    			pr_err("Can't parse sample, err = %d\n", ret);
    
    		else {
    			ret = perf_session_deliver_event(s, iter->event, &sample, tool,
    							 iter->file_offset);
    			if (ret)
    				return ret;
    		}
    
    		os->last_flush = iter->timestamp;
    
    		list_add(&iter->list, &os->sample_cache);
    
    		if (++idx >= progress_next) {
    			progress_next += os->nr_samples / 16;
    			ui_progress__update(idx, os->nr_samples,
    					    "Processing time ordered events...");
    		}
    
    
    	if (list_empty(head)) {
    		os->last_sample = NULL;
    	} else if (last_ts <= limit) {
    		os->last_sample =
    			list_entry(head->prev, struct sample_queue, list);
    	}
    
    /*
     * When perf record finishes a pass on every buffers, it records this pseudo
     * event.
     * We record the max timestamp t found in the pass n.
     * Assuming these timestamps are monotonic across cpus, we know that if
     * a buffer still has events with timestamps below t, they will be all
     * available and then read in the pass n + 1.
     * Hence when we start to read the pass n + 2, we can safely flush every
     * events with timestamps below t.
     *
     *    ============ PASS n =================
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          1          |         2
     *          2          |         3
     *          -          |         4  <--- max recorded
     *
     *    ============ PASS n + 1 ==============
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          3          |         5
     *          4          |         6
     *          5          |         7 <---- max recorded
     *
     *      Flush every events below timestamp 4
     *
     *    ============ PASS n + 2 ==============
     *       CPU 0         |   CPU 1
     *                     |
     *    cnt1 timestamps  |   cnt2 timestamps
     *          6          |         8
     *          7          |         9
     *          -          |         10
     *
     *      Flush every events below timestamp 7
     *      etc...
     */
    
    static int process_finished_round(struct perf_tool *tool,
    
    				  union perf_event *event __maybe_unused,
    
    	int ret = flush_sample_queue(session, tool);
    	if (!ret)
    		session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
    
    static void __queue_event(struct sample_queue *new, struct perf_session *s)
    
    	struct ordered_samples *os = &s->ordered_samples;
    	struct sample_queue *sample = os->last_sample;
    	u64 timestamp = new->timestamp;
    	struct list_head *p;
    
    	os->last_sample = new;
    
    	if (!sample) {
    		list_add(&new->list, &os->samples);
    		os->max_timestamp = timestamp;
    
    	 * last_sample might point to some random place in the list as it's
    	 * the last queued event. We expect that the new event is close to
    	 * this.
    
    	if (sample->timestamp <= timestamp) {
    		while (sample->timestamp <= timestamp) {
    			p = sample->list.next;
    			if (p == &os->samples) {
    				list_add_tail(&new->list, &os->samples);
    				os->max_timestamp = timestamp;
    				return;
    			}
    			sample = list_entry(p, struct sample_queue, list);
    		}
    		list_add_tail(&new->list, &sample->list);
    	} else {
    		while (sample->timestamp > timestamp) {
    			p = sample->list.prev;
    			if (p == &os->samples) {
    				list_add(&new->list, &os->samples);
    				return;
    			}
    			sample = list_entry(p, struct sample_queue, list);
    		}
    		list_add(&new->list, &sample->list);
    	}
    
    #define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))
    
    
    static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
    
    				    struct perf_sample *sample, u64 file_offset)
    
    	struct ordered_samples *os = &s->ordered_samples;
    	struct list_head *sc = &os->sample_cache;
    
    	if (!timestamp || timestamp == ~0ULL)
    
    	if (timestamp < s->ordered_samples.last_flush) {
    		printf("Warning: Timestamp below last timeslice flush\n");
    		return -EINVAL;
    	}
    
    
    	if (!list_empty(sc)) {
    		new = list_entry(sc->next, struct sample_queue, list);
    		list_del(&new->list);
    
    	} else if (os->sample_buffer) {
    		new = os->sample_buffer + os->sample_buffer_idx;
    		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
    			os->sample_buffer = NULL;
    
    		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
    		if (!os->sample_buffer)
    
    			return -ENOMEM;
    
    		list_add(&os->sample_buffer->list, &os->to_free);
    		os->sample_buffer_idx = 2;
    		new = os->sample_buffer + 1;
    
    	new->file_offset = file_offset;
    
    static void callchain__printf(struct perf_sample *sample)
    
    	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
    
    
    	for (i = 0; i < sample->callchain->nr; i++)
    
    		printf("..... %2d: %016" PRIx64 "\n",
    		       i, sample->callchain->ips[i]);
    
    static void branch_stack__printf(struct perf_sample *sample)
    {
    	uint64_t i;
    
    	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);
    
    	for (i = 0; i < sample->branch_stack->nr; i++)
    		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
    			i, sample->branch_stack->entries[i].from,
    			sample->branch_stack->entries[i].to);
    }
    
    
    static void regs_dump__printf(u64 mask, u64 *regs)
    {
    	unsigned rid, i = 0;
    
    	for_each_set_bit(rid, (unsigned long *) &mask, sizeof(mask) * 8) {
    		u64 val = regs[i++];
    
    		printf(".... %-5s 0x%" PRIx64 "\n",
    		       perf_reg_name(rid), val);
    	}
    }
    
    static void regs_user__printf(struct perf_sample *sample, u64 mask)
    {
    	struct regs_dump *user_regs = &sample->user_regs;
    
    	if (user_regs->regs) {
    		printf("... user regs: mask 0x%" PRIx64 "\n", mask);
    		regs_dump__printf(mask, user_regs->regs);
    	}
    }
    
    static void stack_user__printf(struct stack_dump *dump)
    {
    	printf("... ustack: size %" PRIu64 ", offset 0x%x\n",
    	       dump->size, dump->offset);
    }
    
    
    static void perf_session__print_tstamp(struct perf_session *session,
    
    	u64 sample_type = perf_evlist__sample_type(session->evlist);
    
    
    	if (event->header.type != PERF_RECORD_SAMPLE &&
    
    	    !perf_evlist__sample_id_all(session->evlist)) {
    
    	if ((sample_type & PERF_SAMPLE_CPU))
    
    	if (sample_type & PERF_SAMPLE_TIME)
    
    		printf("%" PRIu64 " ", sample->time);
    
    static void dump_event(struct perf_session *session, union perf_event *event,
    
    		       u64 file_offset, struct perf_sample *sample)
    
    	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
    	       file_offset, event->header.size, event->header.type);
    
    
    	trace_event(event);
    
    	if (sample)
    		perf_session__print_tstamp(session, event, sample);
    
    
    	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
    
    	       event->header.size, perf_event__name(event->header.type));
    
    static void dump_sample(struct perf_evsel *evsel, union perf_event *event,
    
    	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
    
    	       event->header.misc, sample->pid, sample->tid, sample->ip,
    
    	       sample->period, sample->addr);
    
    	sample_type = evsel->attr.sample_type;
    
    
    	if (sample_type & PERF_SAMPLE_CALLCHAIN)
    
    		callchain__printf(sample);