Skip to content
Snippets Groups Projects
memcontrol.c 27.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* memcontrol.c - Memory Controller
     *
     * Copyright IBM Corporation, 2007
     * Author Balbir Singh <balbir@linux.vnet.ibm.com>
     *
    
     * Copyright 2007 OpenVZ SWsoft Inc
     * Author: Pavel Emelianov <xemul@openvz.org>
     *
    
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     */
    
    #include <linux/res_counter.h>
    #include <linux/memcontrol.h>
    #include <linux/cgroup.h>
    
    #include <linux/mm.h>
    
    #include <linux/page-flags.h>
    
    #include <linux/backing-dev.h>
    
    #include <linux/bit_spinlock.h>
    #include <linux/rcupdate.h>
    
    #include <linux/swap.h>
    #include <linux/spinlock.h>
    #include <linux/fs.h>
    
    #include <linux/seq_file.h>
    
    struct cgroup_subsys mem_cgroup_subsys;
    
    static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
    
    /*
     * Statistics for memory cgroup.
     */
    enum mem_cgroup_stat_index {
    	/*
    	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
    	 */
    	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
    	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
    
    	MEM_CGROUP_STAT_NSTATS,
    };
    
    struct mem_cgroup_stat_cpu {
    	s64 count[MEM_CGROUP_STAT_NSTATS];
    } ____cacheline_aligned_in_smp;
    
    struct mem_cgroup_stat {
    	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
    };
    
    /*
     * For accounting under irq disable, no need for increment preempt count.
     */
    static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
    		enum mem_cgroup_stat_index idx, int val)
    {
    	int cpu = smp_processor_id();
    	stat->cpustat[cpu].count[idx] += val;
    }
    
    static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
    		enum mem_cgroup_stat_index idx)
    {
    	int cpu;
    	s64 ret = 0;
    	for_each_possible_cpu(cpu)
    		ret += stat->cpustat[cpu].count[idx];
    	return ret;
    }
    
    
    /*
     * per-zone information in memory controller.
     */
    
    enum mem_cgroup_zstat_index {
    	MEM_CGROUP_ZSTAT_ACTIVE,
    	MEM_CGROUP_ZSTAT_INACTIVE,
    
    	NR_MEM_CGROUP_ZSTAT,
    };
    
    struct mem_cgroup_per_zone {
    
    	/*
    	 * spin_lock to protect the per cgroup LRU
    	 */
    	spinlock_t		lru_lock;
    
    	struct list_head	active_list;
    	struct list_head	inactive_list;
    
    	unsigned long count[NR_MEM_CGROUP_ZSTAT];
    };
    /* Macro for accessing counter */
    #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
    
    struct mem_cgroup_per_node {
    	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
    };
    
    struct mem_cgroup_lru_info {
    	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
    };
    
    
    /*
     * The memory controller data structure. The memory controller controls both
     * page cache and RSS per cgroup. We would eventually like to provide
     * statistics based on the statistics developed by Rik Van Riel for clock-pro,
     * to help the administrator determine what knobs to tune.
     *
     * TODO: Add a water mark for the memory controller. Reclaim will begin when
    
     * we hit the water mark. May be even add a low water mark, such that
     * no reclaim occurs from a cgroup at it's low water mark, this is
     * a feature that will be implemented much later in the future.
    
     */
    struct mem_cgroup {
    	struct cgroup_subsys_state css;
    	/*
    	 * the counter to account for memory usage
    	 */
    	struct res_counter res;
    
    	/*
    	 * Per cgroup active and inactive list, similar to the
    	 * per zone LRU lists.
    	 */
    
    	int	prev_priority;	/* for recording reclaim priority */
    
    static struct mem_cgroup init_mem_cgroup;
    
    /*
     * We use the lower bit of the page->page_cgroup pointer as a bit spin
    
     * lock.  We need to ensure that page->page_cgroup is at least two
     * byte aligned (based on comments from Nick Piggin).  But since
     * bit_spin_lock doesn't actually set that lock bit in a non-debug
     * uniprocessor kernel, we should avoid setting it here too.
    
     */
    #define PAGE_CGROUP_LOCK_BIT 	0x0
    
    #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
    #define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
    #else
    #define PAGE_CGROUP_LOCK	0x0
    #endif
    
    /*
     * A page_cgroup page is associated with every page descriptor. The
     * page_cgroup helps us identify information about the cgroup
     */
    struct page_cgroup {
    	struct list_head lru;		/* per cgroup LRU list */
    	struct page *page;
    	struct mem_cgroup *mem_cgroup;
    
    	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
    					/* mapped and cached states     */
    
    #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
    
    #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
    
    static int page_cgroup_nid(struct page_cgroup *pc)
    
    static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
    
    enum charge_type {
    	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
    	MEM_CGROUP_CHARGE_TYPE_MAPPED,
    };
    
    
    /*
     * Always modified under lru lock. Then, not necessary to preempt_disable()
     */
    static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
    					bool charge)
    {
    	int val = (charge)? 1 : -1;
    	struct mem_cgroup_stat *stat = &mem->stat;
    
    
    	VM_BUG_ON(!irqs_disabled());
    
    		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
    
    	else
    		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
    
    static struct mem_cgroup_per_zone *
    
    mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
    {
    	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
    }
    
    
    static struct mem_cgroup_per_zone *
    
    page_cgroup_zoneinfo(struct page_cgroup *pc)
    {
    	struct mem_cgroup *mem = pc->mem_cgroup;
    	int nid = page_cgroup_nid(pc);
    	int zid = page_cgroup_zid(pc);
    
    	return mem_cgroup_zoneinfo(mem, nid, zid);
    }
    
    static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
    					enum mem_cgroup_zstat_index idx)
    {
    	int nid, zid;
    	struct mem_cgroup_per_zone *mz;
    	u64 total = 0;
    
    	for_each_online_node(nid)
    		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    			mz = mem_cgroup_zoneinfo(mem, nid, zid);
    			total += MEM_CGROUP_ZSTAT(mz, idx);
    		}
    	return total;
    
    static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
    
    {
    	return container_of(cgroup_subsys_state(cont,
    				mem_cgroup_subsys_id), struct mem_cgroup,
    				css);
    }
    
    
    static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
    
    {
    	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
    				struct mem_cgroup, css);
    }
    
    void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
    {
    	struct mem_cgroup *mem;
    
    	mem = mem_cgroup_from_task(p);
    	css_get(&mem->css);
    	mm->mem_cgroup = mem;
    }
    
    void mm_free_cgroup(struct mm_struct *mm)
    {
    	css_put(&mm->mem_cgroup->css);
    }
    
    
    static inline int page_cgroup_locked(struct page *page)
    {
    
    	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
    
    static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
    
    	VM_BUG_ON(!page_cgroup_locked(page));
    	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
    
    }
    
    struct page_cgroup *page_get_page_cgroup(struct page *page)
    {
    
    	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
    
    static void lock_page_cgroup(struct page *page)
    
    {
    	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
    }
    
    
    static void unlock_page_cgroup(struct page *page)
    
    {
    	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
    }
    
    
    /*
     * Clear page->page_cgroup member under lock_page_cgroup().
     * If given "pc" value is different from one page->page_cgroup,
     * page->cgroup is not cleared.
     * Returns a value of page->page_cgroup at lock taken.
     * A can can detect failure of clearing by following
     *  clear_page_cgroup(page, pc) == pc
     */
    
    static struct page_cgroup *clear_page_cgroup(struct page *page,
    						struct page_cgroup *pc)
    
    {
    	struct page_cgroup *ret;
    	/* lock and clear */
    	lock_page_cgroup(page);
    	ret = page_get_page_cgroup(page);
    	if (likely(ret == pc))
    		page_assign_page_cgroup(page, NULL);
    	unlock_page_cgroup(page);
    	return ret;
    }
    
    
    static void __mem_cgroup_remove_list(struct page_cgroup *pc)
    {
    	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
    	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
    
    	if (from)
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
    	else
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
    
    	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
    	list_del_init(&pc->lru);
    }
    
    static void __mem_cgroup_add_list(struct page_cgroup *pc)
    {
    	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
    	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
    
    	if (!to) {
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
    
    	} else {
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
    
    	}
    	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
    }
    
    
    static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
    
    	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
    	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
    
    	if (from)
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
    	else
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
    
    
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
    
    		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
    
    int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
    {
    	int ret;
    
    	task_lock(task);
    
    	ret = task->mm && mm_match_cgroup(task->mm, mem);
    
    /*
     * This routine assumes that the appropriate zone's lru lock is already held
     */
    
    void mem_cgroup_move_lists(struct page *page, bool active)
    
    	struct page_cgroup *pc;
    
    	struct mem_cgroup_per_zone *mz;
    	unsigned long flags;
    
    
    	pc = page_get_page_cgroup(page);
    
    	mz = page_cgroup_zoneinfo(pc);
    	spin_lock_irqsave(&mz->lru_lock, flags);
    
    	__mem_cgroup_move_lists(pc, active);
    
    	spin_unlock_irqrestore(&mz->lru_lock, flags);
    
    /*
     * Calculate mapped_ratio under memory controller. This will be used in
     * vmscan.c for deteremining we have to reclaim mapped pages.
     */
    int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
    {
    	long total, rss;
    
    	/*
    	 * usage is recorded in bytes. But, here, we assume the number of
    	 * physical pages can be represented by "long" on any arch.
    	 */
    	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
    	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
    	return (int)((rss * 100L) / total);
    }
    
    /*
     * This function is called from vmscan.c. In page reclaiming loop. balance
     * between active and inactive list is calculated. For memory controller
     * page reclaiming, we should use using mem_cgroup's imbalance rather than
     * zone's global lru imbalance.
     */
    long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
    {
    	unsigned long active, inactive;
    	/* active and inactive are the number of pages. 'long' is ok.*/
    	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
    	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
    	return (long) (active / (inactive + 1));
    }
    
    /*
     * prev_priority control...this will be used in memory reclaim path.
     */
    int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
    {
    	return mem->prev_priority;
    }
    
    void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
    {
    	if (priority < mem->prev_priority)
    		mem->prev_priority = priority;
    }
    
    void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
    {
    	mem->prev_priority = priority;
    }
    
    
    /*
     * Calculate # of pages to be scanned in this priority/zone.
     * See also vmscan.c
     *
     * priority starts from "DEF_PRIORITY" and decremented in each loop.
     * (see include/linux/mmzone.h)
     */
    
    long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
    				   struct zone *zone, int priority)
    {
    	long nr_active;
    	int nid = zone->zone_pgdat->node_id;
    	int zid = zone_idx(zone);
    	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
    
    	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
    	return (nr_active >> priority);
    }
    
    long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
    					struct zone *zone, int priority)
    {
    	long nr_inactive;
    	int nid = zone->zone_pgdat->node_id;
    	int zid = zone_idx(zone);
    	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
    
    	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
    	return (nr_inactive >> priority);
    }
    
    
    unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
    					struct list_head *dst,
    					unsigned long *scanned, int order,
    					int mode, struct zone *z,
    					struct mem_cgroup *mem_cont,
    					int active)
    {
    	unsigned long nr_taken = 0;
    	struct page *page;
    	unsigned long scan;
    	LIST_HEAD(pc_list);
    	struct list_head *src;
    
    	int nid = z->zone_pgdat->node_id;
    	int zid = zone_idx(z);
    	struct mem_cgroup_per_zone *mz;
    
    	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
    
    	scan = 0;
    	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
    
    		if (scan >= nr_to_scan)
    
    		if (unlikely(!PageLRU(page)))
    
    		if (PageActive(page) && !active) {
    			__mem_cgroup_move_lists(pc, true);
    			continue;
    		}
    		if (!PageActive(page) && active) {
    			__mem_cgroup_move_lists(pc, false);
    			continue;
    		}
    
    
    		scan++;
    		list_move(&pc->lru, &pc_list);
    
    
    		if (__isolate_lru_page(page, mode) == 0) {
    			list_move(&page->lru, dst);
    			nr_taken++;
    		}
    	}
    
    	list_splice(&pc_list, src);
    
    /*
     * Charge the memory controller for page usage.
     * Return
     * 0 if the charge was successful
     * < 0 if the cgroup is over its limit
     */
    
    static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask, enum charge_type ctype)
    
    {
    	struct mem_cgroup *mem;
    
    	unsigned long flags;
    	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
    
    
    	/*
    	 * Should page_cgroup's go to their own slab?
    	 * One could optimize the performance of the charging routine
    	 * by saving a bit in the page_flags and using it as a lock
    	 * to see if the cgroup page already has a page_cgroup associated
    	 * with it
    	 */
    
    	lock_page_cgroup(page);
    	pc = page_get_page_cgroup(page);
    	/*
    	 * The page_cgroup exists and
    	 * the page has already been accounted.
    	 */
    	if (pc) {
    		if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
    			/* this page is under being uncharged ? */
    			unlock_page_cgroup(page);
    			cpu_relax();
    			goto retry;
    		} else {
    			unlock_page_cgroup(page);
    			goto done;
    
    	unlock_page_cgroup(page);
    
    	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
    
    	if (pc == NULL)
    		goto err;
    
    	/*
    
    	 * We always charge the cgroup the mm_struct belongs to.
    	 * The mm_struct's mem_cgroup changes on task migration if the
    
    	 * thread group leader migrates. It's possible that mm is not
    	 * set, if so charge the init_mm (happens for pagecache usage).
    	 */
    	if (!mm)
    		mm = &init_mm;
    
    
    	rcu_read_lock();
    
    	mem = rcu_dereference(mm->mem_cgroup);
    	/*
    
    	 * For every charge from the cgroup, increment reference count
    
    	 */
    	css_get(&mem->css);
    	rcu_read_unlock();
    
    
    	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
    
    		if (!(gfp_mask & __GFP_WAIT))
    			goto out;
    
    
    		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
    
    		 * try_to_free_mem_cgroup_pages() might not give us a full
    		 * picture of reclaim. Some pages are reclaimed and might be
    		 * moved to swap cache or just unmapped from the cgroup.
    		 * Check the limit again to see if the reclaim reduced the
    		 * current usage of the cgroup before giving up
    		 */
    
    		if (res_counter_check_under_limit(&mem->res))
    			continue;
    
    
    		if (!nr_retries--) {
    			mem_cgroup_out_of_memory(mem, gfp_mask);
    			goto out;
    
    		congestion_wait(WRITE, HZ/10);
    
    	}
    
    	atomic_set(&pc->ref_cnt, 1);
    	pc->mem_cgroup = mem;
    	pc->page = page;
    
    	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
    		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
    
    	lock_page_cgroup(page);
    	if (page_get_page_cgroup(page)) {
    		unlock_page_cgroup(page);
    
    		 * Another charge has been added to this page already.
    		 * We take lock_page_cgroup(page) again and read
    
    		 * page->cgroup, increment refcnt.... just retry is OK.
    		 */
    		res_counter_uncharge(&mem->res, PAGE_SIZE);
    		css_put(&mem->css);
    		kfree(pc);
    		goto retry;
    	}
    
    	page_assign_page_cgroup(page, pc);
    	unlock_page_cgroup(page);
    
    	mz = page_cgroup_zoneinfo(pc);
    	spin_lock_irqsave(&mz->lru_lock, flags);
    
    	spin_unlock_irqrestore(&mz->lru_lock, flags);
    
    done:
    	return 0;
    
    out:
    	css_put(&mem->css);
    
    	kfree(pc);
    err:
    	return -ENOMEM;
    }
    
    
    int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
    
    {
    	return mem_cgroup_charge_common(page, mm, gfp_mask,
    
    				MEM_CGROUP_CHARGE_TYPE_MAPPED);
    
    int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
    				gfp_t gfp_mask)
    
    	return mem_cgroup_charge_common(page, mm, gfp_mask,
    
    /*
     * Uncharging is always a welcome operation, we never complain, simply
    
     * uncharge.
    
    void mem_cgroup_uncharge_page(struct page *page)
    
    	struct page_cgroup *pc;
    
    	struct mem_cgroup *mem;
    
    	unsigned long flags;
    
    	 * Check if our page_cgroup is valid
    
    	lock_page_cgroup(page);
    	pc = page_get_page_cgroup(page);
    
    		goto unlock;
    
    
    	if (atomic_dec_and_test(&pc->ref_cnt)) {
    		page = pc->page;
    
    		/*
    		 * get page->cgroup and clear it under lock.
    
    		 * force_empty can drop page->cgroup without checking refcnt.
    
    		unlock_page_cgroup(page);
    
    		if (clear_page_cgroup(page, pc) == pc) {
    			mem = pc->mem_cgroup;
    			css_put(&mem->css);
    			res_counter_uncharge(&mem->res, PAGE_SIZE);
    
    			spin_unlock_irqrestore(&mz->lru_lock, flags);
    
    		lock_page_cgroup(page);
    
    	unlock_page_cgroup(page);
    }
    
    
    /*
     * Returns non-zero if a page (under migration) has valid page_cgroup member.
     * Refcnt of page_cgroup is incremented.
     */
    int mem_cgroup_prepare_migration(struct page *page)
    {
    	struct page_cgroup *pc;
    	int ret = 0;
    
    	lock_page_cgroup(page);
    	pc = page_get_page_cgroup(page);
    	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
    		ret = 1;
    	unlock_page_cgroup(page);
    	return ret;
    }
    
    void mem_cgroup_end_migration(struct page *page)
    {
    
    	mem_cgroup_uncharge_page(page);
    
     * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
    
     * And no race with uncharge() routines because page_cgroup for *page*
     * has extra one reference by mem_cgroup_prepare_migration.
     */
    void mem_cgroup_page_migration(struct page *page, struct page *newpage)
    {
    	struct page_cgroup *pc;
    
    	unsigned long flags;
    
    retry:
    	pc = page_get_page_cgroup(page);
    	if (!pc)
    		return;
    
    	if (clear_page_cgroup(page, pc) != pc)
    		goto retry;
    
    	spin_lock_irqsave(&mz->lru_lock, flags);
    
    	pc->page = newpage;
    	lock_page_cgroup(newpage);
    	page_assign_page_cgroup(newpage, pc);
    	unlock_page_cgroup(newpage);
    
    	mz = page_cgroup_zoneinfo(pc);
    	spin_lock_irqsave(&mz->lru_lock, flags);
    	__mem_cgroup_add_list(pc);
    	spin_unlock_irqrestore(&mz->lru_lock, flags);
    
    /*
     * This routine traverse page_cgroup in given list and drop them all.
     * This routine ignores page_cgroup->ref_cnt.
     * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
     */
    #define FORCE_UNCHARGE_BATCH	(128)
    
    static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
    
    {
    	struct page_cgroup *pc;
    	struct page *page;
    	int count;
    	unsigned long flags;
    
    	struct list_head *list;
    
    	if (active)
    		list = &mz->active_list;
    	else
    		list = &mz->inactive_list;
    
    
    	while (--count && !list_empty(list)) {
    		pc = list_entry(list->prev, struct page_cgroup, lru);
    		page = pc->page;
    		/* Avoid race with charge */
    		atomic_set(&pc->ref_cnt, 0);
    		if (clear_page_cgroup(page, pc) == pc) {
    			css_put(&mem->css);
    			res_counter_uncharge(&mem->res, PAGE_SIZE);
    
    			kfree(pc);
    		} else 	/* being uncharged ? ...do relax */
    			break;
    	}
    
    	spin_unlock_irqrestore(&mz->lru_lock, flags);
    
    	if (!list_empty(list)) {
    		cond_resched();
    		goto retry;
    	}
    }
    
    /*
     * make mem_cgroup's charge to be 0 if there is no task.
     * This enables deleting this mem_cgroup.
     */
    
    static int mem_cgroup_force_empty(struct mem_cgroup *mem)
    
    	css_get(&mem->css);
    	/*
    	 * page reclaim code (kswapd etc..) will move pages between
    
    	 * active_list <-> inactive_list while we don't take a lock.
    
    	 * So, we have to do loop here until all lists are empty.
    	 */
    
    		if (atomic_read(&mem->css.cgroup->count) > 0)
    			goto out;
    
    		for_each_node_state(node, N_POSSIBLE)
    			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    				struct mem_cgroup_per_zone *mz;
    				mz = mem_cgroup_zoneinfo(mem, node, zid);
    				/* drop all page_cgroup in active_list */
    
    				/* drop all page_cgroup in inactive_list */
    
    static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
    
    {
    	*tmp = memparse(buf, &buf);
    	if (*buf != '\0')
    		return -EINVAL;
    
    	/*
    	 * Round up the value to the closest page size
    	 */
    	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
    	return 0;
    }
    
    static ssize_t mem_cgroup_read(struct cgroup *cont,
    			struct cftype *cft, struct file *file,
    			char __user *userbuf, size_t nbytes, loff_t *ppos)
    
    {
    	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
    
    				cft->private, userbuf, nbytes, ppos,
    				NULL);
    
    }
    
    static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
    				struct file *file, const char __user *userbuf,
    				size_t nbytes, loff_t *ppos)
    {
    	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
    
    				cft->private, userbuf, nbytes, ppos,
    				mem_cgroup_write_strategy);
    
    static ssize_t mem_force_empty_write(struct cgroup *cont,
    				struct cftype *cft, struct file *file,
    				const char __user *userbuf,
    				size_t nbytes, loff_t *ppos)
    {
    	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
    
    	int ret = mem_cgroup_force_empty(mem);
    
    	if (!ret)
    		ret = nbytes;
    	return ret;
    }
    
    /*
     * Note: This should be removed if cgroup supports write-only file.
     */
    static ssize_t mem_force_empty_read(struct cgroup *cont,
    				struct cftype *cft,
    				struct file *file, char __user *userbuf,
    				size_t nbytes, loff_t *ppos)
    {
    	return -EINVAL;
    }
    
    
    static const struct mem_cgroup_stat_desc {
    	const char *msg;
    	u64 unit;
    } mem_cgroup_stat_desc[] = {
    	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
    	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
    };
    
    static int mem_control_stat_show(struct seq_file *m, void *arg)
    {
    	struct cgroup *cont = m->private;
    	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
    	struct mem_cgroup_stat *stat = &mem_cont->stat;
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
    		s64 val;
    
    		val = mem_cgroup_read_stat(stat, i);
    		val *= mem_cgroup_stat_desc[i].unit;
    		seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
    				(long long)val);
    	}
    
    	/* showing # of active pages */
    	{
    		unsigned long active, inactive;
    
    		inactive = mem_cgroup_get_all_zonestat(mem_cont,
    						MEM_CGROUP_ZSTAT_INACTIVE);
    		active = mem_cgroup_get_all_zonestat(mem_cont,
    						MEM_CGROUP_ZSTAT_ACTIVE);
    		seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
    		seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
    	}
    
    	return 0;
    }
    
    static const struct file_operations mem_control_stat_file_operations = {
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = single_release,
    };
    
    static int mem_control_stat_open(struct inode *unused, struct file *file)
    {
    	/* XXX __d_cont */
    	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
    
    	file->f_op = &mem_control_stat_file_operations;
    	return single_open(file, mem_control_stat_show, cont);
    }
    
    
    static struct cftype mem_cgroup_files[] = {
    	{
    
    		.name = "usage_in_bytes",
    
    		.private = RES_USAGE,
    		.read = mem_cgroup_read,
    	},
    	{
    
    		.name = "limit_in_bytes",
    
    		.private = RES_LIMIT,
    		.write = mem_cgroup_write,
    		.read = mem_cgroup_read,
    	},
    	{
    		.name = "failcnt",
    		.private = RES_FAILCNT,
    		.read = mem_cgroup_read,
    	},
    
    	{
    		.name = "force_empty",
    		.write = mem_force_empty_write,
    		.read = mem_force_empty_read,
    	},
    
    	{
    		.name = "stat",
    		.open = mem_control_stat_open,
    	},
    
    static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
    {
    	struct mem_cgroup_per_node *pn;
    
    	struct mem_cgroup_per_zone *mz;
    	int zone;
    	/*
    	 * This routine is called against possible nodes.
    	 * But it's BUG to call kmalloc() against offline node.
    	 *
    	 * TODO: this routine can waste much memory for nodes which will
    	 *       never be onlined. It's better to use memory hotplug callback
    	 *       function.
    	 */
    	if (node_state(node, N_HIGH_MEMORY))
    		pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
    	else
    		pn = kmalloc(sizeof(*pn), GFP_KERNEL);