Newer
Older
mtu = mss +
tp->tcp_header_len +
icsk->icsk_ext_hdr_len +
icsk->icsk_af_ops->net_header_len;
return mtu;
}
/* MTU probing init per socket */
void tcp_mtup_init(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
icsk->icsk_af_ops->net_header_len;
icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
icsk->icsk_mtup.probe_size = 0;
}
/* This function synchronize snd mss to current pmtu/exthdr set.
tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
for TCP options, but includes only bare TCP header.
tp->rx_opt.mss_clamp is mss negotiated at connection setup.
It is minimum of user_mss and mss received with SYN.
inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
tp->mss_cache is current effective sending mss, including
all tcp options except for SACKs. It is evaluated,
taking into account current pmtu, but never exceeds
tp->rx_opt.mss_clamp.
NOTE1. rfc1122 clearly states that advertised MSS
DOES NOT include either tcp or ip options.
NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
are READ ONLY outside this function. --ANK (980731)
*/
unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
if (icsk->icsk_mtup.search_high > pmtu)
icsk->icsk_mtup.search_high = pmtu;
mss_now = tcp_bound_to_half_wnd(tp, mss_now);
icsk->icsk_pmtu_cookie = pmtu;
if (icsk->icsk_mtup.enabled)
mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
return mss_now;
}
/* Compute the current effective MSS, taking SACKs and IP options,
* and even PMTU discovery events into account.
*/
unsigned int tcp_current_mss(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
unsigned header_len;
struct tcp_out_options opts;
struct tcp_md5sig_key *md5;
mss_now = tp->mss_cache;
if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
header_len = tcp_established_options(sk, NULL, &opts, &md5) +
sizeof(struct tcphdr);
/* The mss_cache is sized based on tp->tcp_header_len, which assumes
* some common options. If this is an odd packet (because we have SACK
* blocks etc) then our calculated header_len will be different, and
* we have to adjust mss_now correspondingly */
if (header_len != tp->tcp_header_len) {
int delta = (int) header_len - tp->tcp_header_len;
mss_now -= delta;
}
/* Congestion window validation. (RFC2861) */
static void tcp_cwnd_validate(struct sock *sk)
struct tcp_sock *tp = tcp_sk(sk);
if (tp->packets_out >= tp->snd_cwnd) {
/* Network is feed fully. */
tp->snd_cwnd_used = 0;
tp->snd_cwnd_stamp = tcp_time_stamp;
} else {
/* Network starves. */
if (tp->packets_out > tp->snd_cwnd_used)
tp->snd_cwnd_used = tp->packets_out;
if (sysctl_tcp_slow_start_after_idle &&
(s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
tcp_cwnd_application_limited(sk);
}
}
/* Returns the portion of skb which can be sent right away without
* introducing MSS oddities to segment boundaries. In rare cases where
* mss_now != mss_cache, we will request caller to create a small skb
* per input skb which could be mostly avoided here (if desired).
*
* We explicitly want to create a request for splitting write queue tail
* to a small skb for Nagle purposes while avoiding unnecessary modulos,
* thus all the complexity (cwnd_len is always MSS multiple which we
* return whenever allowed by the other factors). Basically we need the
* modulo only when the receiver window alone is the limiting factor or
* when we would be allowed to send the split-due-to-Nagle skb fully.
*/
static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
unsigned int mss_now, unsigned int cwnd)
struct tcp_sock *tp = tcp_sk(sk);
u32 needed, window, cwnd_len;
window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
return cwnd_len;
needed = min(skb->len, window);
if (cwnd_len <= needed)
return cwnd_len;
return needed - needed % mss_now;
}
/* Can at least one segment of SKB be sent right now, according to the
* congestion window rules? If so, return how many segments are allowed.
*/
static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
struct sk_buff *skb)
{
u32 in_flight, cwnd;
/* Don't be strict about the congestion window for the final FIN. */
if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
tcp_skb_pcount(skb) == 1)
return 1;
in_flight = tcp_packets_in_flight(tp);
cwnd = tp->snd_cwnd;
if (in_flight < cwnd)
return (cwnd - in_flight);
return 0;
}
/* Intialize TSO state of a skb.
* This must be invoked the first time we consider transmitting
* SKB onto the wire.
*/
static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
unsigned int mss_now)
{
int tso_segs = tcp_skb_pcount(skb);
if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
tcp_set_skb_tso_segs(sk, skb, mss_now);
tso_segs = tcp_skb_pcount(skb);
}
return tso_segs;
}
/* Minshall's variant of the Nagle send check. */
static inline int tcp_minshall_check(const struct tcp_sock *tp)
{
return after(tp->snd_sml, tp->snd_una) &&
!after(tp->snd_sml, tp->snd_nxt);
}
/* Return 0, if packet can be sent now without violation Nagle's rules:
* 1. It is full sized.
* 2. Or it contains FIN. (already checked by caller)
* 3. Or TCP_NODELAY was set.
* 4. Or TCP_CORK is not set, and all sent packets are ACKed.
* With Minshall's modification: all sent small packets are ACKed.
*/
static inline int tcp_nagle_check(const struct tcp_sock *tp,
unsigned mss_now, int nonagle)
{
return (skb->len < mss_now &&
((nonagle & TCP_NAGLE_CORK) ||
(!nonagle && tp->packets_out && tcp_minshall_check(tp))));
}
/* Return non-zero if the Nagle test allows this packet to be
* sent now.
*/
static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
unsigned int cur_mss, int nonagle)
{
/* Nagle rule does not apply to frames, which sit in the middle of the
* write_queue (they have no chances to get new data).
*
* This is implemented in the callers, where they modify the 'nonagle'
* argument based upon the location of SKB in the send queue.
*/
if (nonagle & TCP_NAGLE_PUSH)
return 1;
/* Don't use the nagle rule for urgent data (or for the final FIN).
* Nagle can be ignored during F-RTO too (see RFC4138).
*/
if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
return 1;
if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
return 1;
return 0;
}
/* Does at least the first segment of SKB fit into the send window? */
static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
unsigned int cur_mss)
{
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
if (skb->len > cur_mss)
end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
return !after(end_seq, tcp_wnd_end(tp));
/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
* should be put on the wire right now. If so, it returns the number of
* packets allowed by the congestion window.
*/
static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
unsigned int cur_mss, int nonagle)
{
struct tcp_sock *tp = tcp_sk(sk);
unsigned int cwnd_quota;
tcp_init_tso_segs(sk, skb, cur_mss);
if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
return 0;
cwnd_quota = tcp_cwnd_test(tp, skb);
if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
cwnd_quota = 0;
return cwnd_quota;
}
/* Test if sending is allowed right now. */
int tcp_may_send_now(struct sock *sk)
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb = tcp_send_head(sk);
tcp_snd_test(sk, skb, tcp_current_mss(sk),
(tcp_skb_is_last(sk, skb) ?
tp->nonagle : TCP_NAGLE_PUSH)));
}
/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
* which is put after SKB on the list. It is very much like
* tcp_fragment() except that it may make several kinds of assumptions
* in order to speed up the splitting operation. In particular, we
* know that all the data is in scatter-gather pages, and that the
* packet has never been sent out before (and thus is not cloned).
*/
static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
unsigned int mss_now)
{
struct sk_buff *buff;
int nlen = skb->len - len;
u8 flags;
/* All of a TSO frame must be composed of paged data. */
if (skb->len != skb->data_len)
return tcp_fragment(sk, skb, len, mss_now);
buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
if (unlikely(buff == NULL))
return -ENOMEM;
sk->sk_wmem_queued += buff->truesize;
sk_mem_charge(sk, buff->truesize);
skb->truesize -= nlen;
/* Correct the sequence numbers. */
TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
/* PSH and FIN should only be set in the second packet. */
flags = TCP_SKB_CB(skb)->flags;
TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
TCP_SKB_CB(buff)->flags = flags;
/* This packet was never sent out yet, so no SACK bits. */
TCP_SKB_CB(buff)->sacked = 0;
buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
skb_split(skb, buff, len);
/* Fix up tso_factor for both original and new SKB. */
tcp_set_skb_tso_segs(sk, skb, mss_now);
tcp_set_skb_tso_segs(sk, buff, mss_now);
/* Link BUFF into the send queue. */
skb_header_release(buff);
tcp_insert_write_queue_after(skb, buff, sk);
return 0;
}
/* Try to defer sending, if possible, in order to minimize the amount
* of TSO splitting we do. View it as a kind of TSO Nagle test.
*
* This algorithm is from John Heffner.
*/
static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
struct tcp_sock *tp = tcp_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
u32 send_win, cong_win, limit, in_flight;
if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
if (icsk->icsk_ca_state != TCP_CA_Open)
goto send_now;
/* Defer for less than two clock ticks. */
(((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
in_flight = tcp_packets_in_flight(tp);
BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
/* From in_flight test above, we know that cwnd > in_flight. */
cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
limit = min(send_win, cong_win);
/* If a full-sized TSO skb can be sent, do it. */
if (limit >= sk->sk_gso_max_size)
/* Middle in queue won't get any more data, full sendable already? */
if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
goto send_now;
if (sysctl_tcp_tso_win_divisor) {
u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
/* If at least some fraction of a window is available,
* just use it.
*/
chunk /= sysctl_tcp_tso_win_divisor;
if (limit >= chunk)
} else {
/* Different approach, try not to defer past a single
* ACK. Receiver should ACK every other full sized
* frame, so if we have space for more than 3 frames
* then send now.
*/
if (limit > tcp_max_burst(tp) * tp->mss_cache)
}
/* Ok, it looks like it is advisable to defer. */
tp->tso_deferred = 1 | (jiffies << 1);
send_now:
tp->tso_deferred = 0;
return 0;
* MTU probe is regularly attempting to increase the path MTU by
* deliberately sending larger packets. This discovers routing
* changes resulting in larger path MTUs.
*
* Returns 0 if we should wait to probe (no cwnd available),
* 1 if a probe was sent,
static int tcp_mtu_probe(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct sk_buff *skb, *nskb, *next;
int len;
int probe_size;
int size_needed;
int copy;
int mss_now;
/* Not currently probing/verifying,
* not in recovery,
* have enough cwnd, and
* not SACKing (the variable headers throw things off) */
if (!icsk->icsk_mtup.enabled ||
icsk->icsk_mtup.probe_size ||
inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
tp->snd_cwnd < 11 ||
tp->rx_opt.num_sacks || tp->rx_opt.dsack)
return -1;
/* Very simple search strategy: just double the MSS. */
size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
/* TODO: set timer for probe_converge_event */
return -1;
}
/* Have enough data in the send queue to probe? */
if (tp->write_seq - tp->snd_nxt < size_needed)
if (tp->snd_wnd < size_needed)
return -1;
if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
return 0;
/* Do we need to wait to drain cwnd? With none in flight, don't stall */
if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
if (!tcp_packets_in_flight(tp))
return -1;
else
return 0;
}
/* We're allowed to probe. Build it now. */
if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
return -1;
sk->sk_wmem_queued += nskb->truesize;
sk_mem_charge(sk, nskb->truesize);
skb = tcp_send_head(sk);
TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
TCP_SKB_CB(nskb)->sacked = 0;
nskb->csum = 0;
nskb->ip_summed = skb->ip_summed;
tcp_insert_write_queue_before(nskb, skb, sk);
tcp_for_write_queue_from_safe(skb, next, sk) {
copy = min_t(int, skb->len, probe_size - len);
if (nskb->ip_summed)
skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
else
nskb->csum = skb_copy_and_csum_bits(skb, 0,
skb_put(nskb, copy),
copy, nskb->csum);
if (skb->len <= copy) {
/* We've eaten all the data from this skb.
* Throw it away. */
TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
tcp_unlink_write_queue(skb, sk);
sk_wmem_free_skb(sk, skb);
} else {
TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
if (!skb_shinfo(skb)->nr_frags) {
skb_pull(skb, copy);
if (skb->ip_summed != CHECKSUM_PARTIAL)
skb->csum = csum_partial(skb->data,
skb->len, 0);
} else {
__pskb_trim_head(skb, copy);
tcp_set_skb_tso_segs(sk, skb, mss_now);
}
TCP_SKB_CB(skb)->seq += copy;
}
len += copy;
if (len >= probe_size)
break;
}
tcp_init_tso_segs(sk, nskb, nskb->len);
/* We're ready to send. If this fails, the probe will
* be resegmented into mss-sized pieces by tcp_write_xmit(). */
TCP_SKB_CB(nskb)->when = tcp_time_stamp;
if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
/* Decrement cwnd here because we are sending
tcp_event_new_data_sent(sk, nskb);
icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
return 1;
}
return -1;
}
/* This routine writes packets to the network. It advances the
* send_head. This happens as incoming acks open up the remote
* window for us.
*
* LARGESEND note: !tcp_urg_mode is overkill, only frames between
* snd_up-64k-mss .. snd_up cannot be large. However, taking into
* account rare use of URG, this is not a big flaw.
*
* Returns 1, if no segments are in flight and we have queued segments, but
* cannot send anything now because of SWS or another problem.
*/
static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
int push_one, gfp_t gfp)
unsigned int tso_segs, sent_pkts;
int cwnd_quota;
if (!push_one) {
/* Do MTU probing. */
result = tcp_mtu_probe(sk);
if (!result) {
return 0;
} else if (result > 0) {
sent_pkts = 1;
}
while ((skb = tcp_send_head(sk))) {
unsigned int limit;
tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
cwnd_quota = tcp_cwnd_test(tp, skb);
if (!cwnd_quota)
break;
if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
break;
if (tso_segs == 1) {
if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
(tcp_skb_is_last(sk, skb) ?
nonagle : TCP_NAGLE_PUSH))))
break;
} else {
if (!push_one && tcp_tso_should_defer(sk, skb))
limit = mss_now;
if (tso_segs > 1 && !tcp_urg_mode(tp))
limit = tcp_mss_split_point(sk, skb, mss_now,
cwnd_quota);
if (skb->len > limit &&
unlikely(tso_fragment(sk, skb, limit, mss_now)))
break;
TCP_SKB_CB(skb)->when = tcp_time_stamp;
if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
/* Advance the send_head. This one is sent out.
* This call will increment packets_out.
*/
tcp_event_new_data_sent(sk, skb);
tcp_minshall_update(tp, mss_now, skb);
sent_pkts++;
if (push_one)
break;
if (likely(sent_pkts)) {
tcp_cwnd_validate(sk);
return !tp->packets_out && tcp_send_head(sk);
/* Push out any pending frames which were held back due to
* TCP_CORK or attempt at coalescing tiny packets.
* The socket must be locked by the caller.
*/
void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
int nonagle)
struct sk_buff *skb = tcp_send_head(sk);
if (!skb)
return;
/* If we are closed, the bytes will have to remain here.
* In time closedown will finish, we empty the write queue and
* all will be happy.
*/
if (unlikely(sk->sk_state == TCP_CLOSE))
return;
if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
}
/* Send _single_ skb sitting at the send head. This function requires
* true push pending frames to setup probe timer etc.
*/
void tcp_push_one(struct sock *sk, unsigned int mss_now)
{
struct sk_buff *skb = tcp_send_head(sk);
BUG_ON(!skb || skb->len < mss_now);
tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
/* This function returns the amount that we can raise the
* usable window based on the following constraints
* 1. The window can never be shrunk once it is offered (RFC 793)
* 2. We limit memory per socket
*
* RFC 1122:
* "the suggested [SWS] avoidance algorithm for the receiver is to keep
* RECV.NEXT + RCV.WIN fixed until:
* RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
*
* i.e. don't raise the right edge of the window until you can raise
* it at least MSS bytes.
*
* Unfortunately, the recommended algorithm breaks header prediction,
* since header prediction assumes th->window stays fixed.
*
* Strictly speaking, keeping th->window fixed violates the receiver
* side SWS prevention criteria. The problem is that under this rule
* a stream of single byte packets will cause the right side of the
* window to always advance by a single byte.
* Of course, if the sender implements sender side SWS prevention
* then this will not be a problem.
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
* If the free space is less than the 1/4 of the maximum
* space available and the free space is less than 1/2 mss,
* then set the window to 0.
* [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
* Otherwise, just prevent the window from shrinking
* and from being larger than the largest representable value.
*
* This prevents incremental opening of the window in the regime
* where TCP is limited by the speed of the reader side taking
* data out of the TCP receive queue. It does nothing about
* those cases where the window is constrained on the sender side
* because the pipeline is full.
*
* BSD also seems to "accidentally" limit itself to windows that are a
* multiple of MSS, at least until the free space gets quite small.
* This would appear to be a side effect of the mbuf implementation.
* Combining these two algorithms results in the observed behavior
* of having a fixed window size at almost all times.
*
* Below we obtain similar behavior by forcing the offered window to
* a multiple of the mss when it is feasible to do so.
*
* Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
* Regular options like TIMESTAMP are taken into account.
*/
u32 __tcp_select_window(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
/* MSS for the peer's data. Previous versions used mss_clamp
* here. I don't know if the value based on our guesses
* of peer's MSS is better for the performance. It's more correct
* but may be worse for the performance because of rcv_mss
* fluctuations. --SAW 1998/11/1
*/
int mss = icsk->icsk_ack.rcv_mss;
int free_space = tcp_space(sk);
int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
int window;
if (mss > full_space)
if (free_space < (full_space >> 1)) {
icsk->icsk_ack.quick = 0;
tp->rcv_ssthresh = min(tp->rcv_ssthresh,
4U * tp->advmss);
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
if (free_space < mss)
return 0;
}
if (free_space > tp->rcv_ssthresh)
free_space = tp->rcv_ssthresh;
/* Don't do rounding if we are using window scaling, since the
* scaled window will not line up with the MSS boundary anyway.
*/
window = tp->rcv_wnd;
if (tp->rx_opt.rcv_wscale) {
window = free_space;
/* Advertise enough space so that it won't get scaled away.
* Import case: prevent zero window announcement if
* 1<<rcv_wscale > mss.
*/
if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
window = (((window >> tp->rx_opt.rcv_wscale) + 1)
<< tp->rx_opt.rcv_wscale);
} else {
/* Get the largest window that is a nice multiple of mss.
* Window clamp already applied above.
* If our current window offering is within 1 mss of the
* free space we just keep it. This prevents the divide
* and multiply from happening most of the time.
* We also don't do any window rounding when the free space
* is too small.
*/
if (window <= free_space - mss || window > free_space)
window = (free_space / mss) * mss;
else if (mss == full_space &&
free_space > window + (full_space >> 1))
window = free_space;
/* Collapses two adjacent SKB's during retransmission. */
static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
int skb_size, next_skb_size;
skb_size = skb->len;
next_skb_size = next_skb->len;
BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
tcp_highest_sack_combine(sk, next_skb, skb);
tcp_unlink_write_queue(next_skb, sk);
skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
next_skb_size);
if (next_skb->ip_summed == CHECKSUM_PARTIAL)
skb->ip_summed = CHECKSUM_PARTIAL;
if (skb->ip_summed != CHECKSUM_PARTIAL)
skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
/* Update sequence range on original skb. */
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
/* Merge over control information. This moves PSH/FIN etc. over */
TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(next_skb)->flags;
/* All done, get rid of second SKB and account for it so
* packet counting does not break.
*/
TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
/* changed transmit queue under us so clear hints */
tcp_clear_retrans_hints_partial(tp);
if (next_skb == tp->retransmit_skb_hint)
tp->retransmit_skb_hint = skb;
tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
sk_wmem_free_skb(sk, next_skb);
/* Check if coalescing SKBs is legal. */
static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb)
{
if (tcp_skb_pcount(skb) > 1)
return 0;
/* TODO: SACK collapsing could be used to remove this condition */
if (skb_shinfo(skb)->nr_frags != 0)
return 0;
if (skb_cloned(skb))
return 0;
if (skb == tcp_send_head(sk))
return 0;
/* Some heurestics for collapsing over SACK'd could be invented */
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
return 0;
return 1;
}
/* Collapse packets in the retransmit queue to make to create
* less packets on the wire. This is only done on retransmission.
*/
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
int space)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb = to, *tmp;
int first = 1;
if (!sysctl_tcp_retrans_collapse)
return;
if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)
return;
tcp_for_write_queue_from_safe(skb, tmp, sk) {
if (!tcp_can_collapse(sk, skb))
break;
space -= skb->len;
if (first) {
first = 0;
continue;
}
if (space < 0)
break;
/* Punt if not enough space exists in the first SKB for
* the data in the second
*/
if (skb->len > skb_tailroom(to))
break;
if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
break;
tcp_collapse_retrans(sk, to);
}
}
/* This retransmits one SKB. Policy decisions and retransmit queue
* state updates are done by the caller. Returns non-zero if an
* error occurred which prevented the send.
*/
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
unsigned int cur_mss;
/* Inconslusive MTU probe */
if (icsk->icsk_mtup.probe_size) {
icsk->icsk_mtup.probe_size = 0;
}
/* Do not sent more than we queued. 1/4 is reserved for possible
* copying overhead: fragmentation, tunneling, mangling etc.
*/
if (atomic_read(&sk->sk_wmem_alloc) >
min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
return -EAGAIN;
if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
BUG();
if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
return -ENOMEM;
}
if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
return -EHOSTUNREACH; /* Routing failure or similar. */
/* If receiver has shrunk his window, and skb is out of
* new window, do not retransmit it. The exception is the
* case, when window is shrunk to zero. In this case
* our retransmit serves as a zero window probe.
*/
if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
TCP_SKB_CB(skb)->seq != tp->snd_una)
if (tcp_fragment(sk, skb, cur_mss, cur_mss))
int oldpcount = tcp_skb_pcount(skb);
if (unlikely(oldpcount > 1)) {
tcp_init_tso_segs(sk, skb, cur_mss);
tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
}
tcp_retrans_try_collapse(sk, skb, cur_mss);
/* Some Solaris stacks overoptimize and ignore the FIN on a
* retransmit when old data is attached. So strip it off
* since it is cheap to do so and saves bytes on the network.
*/
if (skb->len > 0 &&
(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
/* Reuse, even though it does some unnecessary work */
tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
TCP_SKB_CB(skb)->flags);
skb->ip_summed = CHECKSUM_NONE;
}
}
/* Make a copy, if the first transmission SKB clone we made
* is still in somebody's hands, else make a clone.
*/
TCP_SKB_CB(skb)->when = tcp_time_stamp;
err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
if (err == 0) {
/* Update global TCP statistics. */
TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
tp->total_retrans++;
#if FASTRETRANS_DEBUG > 0
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
if (net_ratelimit())
printk(KERN_DEBUG "retrans_out leaked.\n");
}
#endif
if (!tp->retrans_out)
tp->lost_retrans_low = tp->snd_nxt;
TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
tp->retrans_out += tcp_skb_pcount(skb);
/* Save stamp of the first retransmit. */
if (!tp->retrans_stamp)
tp->retrans_stamp = TCP_SKB_CB(skb)->when;
tp->undo_retrans++;
/* snd_nxt is stored to detect loss of retransmitted segment,
* see tcp_input.c tcp_sacktag_write_queue().
*/
TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
}
return err;
}
/* Check if we forward retransmits are possible in the current
* window/congestion state.
*/
static int tcp_can_forward_retransmit(struct sock *sk)