Skip to content
Snippets Groups Projects
flow.c 35.1 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright (c) 2007-2011 Nicira, Inc.
    
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of version 2 of the GNU General Public
     * License as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
     * 02110-1301, USA
     */
    
    #include "flow.h"
    #include "datapath.h"
    #include <linux/uaccess.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/if_ether.h>
    #include <linux/if_vlan.h>
    #include <net/llc_pdu.h>
    #include <linux/kernel.h>
    #include <linux/jhash.h>
    #include <linux/jiffies.h>
    #include <linux/llc.h>
    #include <linux/module.h>
    #include <linux/in.h>
    #include <linux/rcupdate.h>
    #include <linux/if_arp.h>
    #include <linux/ip.h>
    #include <linux/ipv6.h>
    #include <linux/tcp.h>
    #include <linux/udp.h>
    #include <linux/icmp.h>
    #include <linux/icmpv6.h>
    #include <linux/rculist.h>
    #include <net/ip.h>
    #include <net/ipv6.h>
    #include <net/ndisc.h>
    
    static struct kmem_cache *flow_cache;
    
    static int check_header(struct sk_buff *skb, int len)
    {
    	if (unlikely(skb->len < len))
    		return -EINVAL;
    	if (unlikely(!pskb_may_pull(skb, len)))
    		return -ENOMEM;
    	return 0;
    }
    
    static bool arphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_network_offset(skb) +
    				  sizeof(struct arp_eth_header));
    }
    
    static int check_iphdr(struct sk_buff *skb)
    {
    	unsigned int nh_ofs = skb_network_offset(skb);
    	unsigned int ip_len;
    	int err;
    
    	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
    	if (unlikely(err))
    		return err;
    
    	ip_len = ip_hdrlen(skb);
    	if (unlikely(ip_len < sizeof(struct iphdr) ||
    		     skb->len < nh_ofs + ip_len))
    		return -EINVAL;
    
    	skb_set_transport_header(skb, nh_ofs + ip_len);
    	return 0;
    }
    
    static bool tcphdr_ok(struct sk_buff *skb)
    {
    	int th_ofs = skb_transport_offset(skb);
    	int tcp_len;
    
    	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
    		return false;
    
    	tcp_len = tcp_hdrlen(skb);
    	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
    		     skb->len < th_ofs + tcp_len))
    		return false;
    
    	return true;
    }
    
    static bool udphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct udphdr));
    }
    
    static bool icmphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct icmphdr));
    }
    
    u64 ovs_flow_used_time(unsigned long flow_jiffies)
    {
    	struct timespec cur_ts;
    	u64 cur_ms, idle_ms;
    
    	ktime_get_ts(&cur_ts);
    	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
    	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
    		 cur_ts.tv_nsec / NSEC_PER_MSEC;
    
    	return cur_ms - idle_ms;
    }
    
    #define SW_FLOW_KEY_OFFSET(field)		\
    	(offsetof(struct sw_flow_key, field) +	\
    	 FIELD_SIZEOF(struct sw_flow_key, field))
    
    static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
    			 int *key_lenp)
    {
    	unsigned int nh_ofs = skb_network_offset(skb);
    	unsigned int nh_len;
    	int payload_ofs;
    	struct ipv6hdr *nh;
    	uint8_t nexthdr;
    	__be16 frag_off;
    	int err;
    
    	*key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
    
    	err = check_header(skb, nh_ofs + sizeof(*nh));
    	if (unlikely(err))
    		return err;
    
    	nh = ipv6_hdr(skb);
    	nexthdr = nh->nexthdr;
    	payload_ofs = (u8 *)(nh + 1) - skb->data;
    
    	key->ip.proto = NEXTHDR_NONE;
    	key->ip.tos = ipv6_get_dsfield(nh);
    	key->ip.ttl = nh->hop_limit;
    	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
    	key->ipv6.addr.src = nh->saddr;
    	key->ipv6.addr.dst = nh->daddr;
    
    	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
    	if (unlikely(payload_ofs < 0))
    		return -EINVAL;
    
    	if (frag_off) {
    		if (frag_off & htons(~0x7))
    			key->ip.frag = OVS_FRAG_TYPE_LATER;
    		else
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    	}
    
    	nh_len = payload_ofs - nh_ofs;
    	skb_set_transport_header(skb, nh_ofs + nh_len);
    	key->ip.proto = nexthdr;
    	return nh_len;
    }
    
    static bool icmp6hdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct icmp6hdr));
    }
    
    #define TCP_FLAGS_OFFSET 13
    #define TCP_FLAG_MASK 0x3f
    
    void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
    {
    	u8 tcp_flags = 0;
    
    
    	if ((flow->key.eth.type == htons(ETH_P_IP) ||
    	     flow->key.eth.type == htons(ETH_P_IPV6)) &&
    
    	    flow->key.ip.proto == IPPROTO_TCP &&
    	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
    
    189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    		u8 *tcp = (u8 *)tcp_hdr(skb);
    		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
    	}
    
    	spin_lock(&flow->lock);
    	flow->used = jiffies;
    	flow->packet_count++;
    	flow->byte_count += skb->len;
    	flow->tcp_flags |= tcp_flags;
    	spin_unlock(&flow->lock);
    }
    
    struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
    {
    	int actions_len = nla_len(actions);
    	struct sw_flow_actions *sfa;
    
    	/* At least DP_MAX_PORTS actions are required to be able to flood a
    	 * packet to every port.  Factor of 2 allows for setting VLAN tags,
    	 * etc. */
    	if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
    		return ERR_PTR(-EINVAL);
    
    	sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
    	if (!sfa)
    		return ERR_PTR(-ENOMEM);
    
    	sfa->actions_len = actions_len;
    	memcpy(sfa->actions, nla_data(actions), actions_len);
    	return sfa;
    }
    
    struct sw_flow *ovs_flow_alloc(void)
    {
    	struct sw_flow *flow;
    
    	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
    	if (!flow)
    		return ERR_PTR(-ENOMEM);
    
    	spin_lock_init(&flow->lock);
    	flow->sf_acts = NULL;
    
    	return flow;
    }
    
    static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
    {
    	hash = jhash_1word(hash, table->hash_seed);
    	return flex_array_get(table->buckets,
    				(hash & (table->n_buckets - 1)));
    }
    
    static struct flex_array *alloc_buckets(unsigned int n_buckets)
    {
    	struct flex_array *buckets;
    	int i, err;
    
    	buckets = flex_array_alloc(sizeof(struct hlist_head *),
    				   n_buckets, GFP_KERNEL);
    	if (!buckets)
    		return NULL;
    
    	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
    	if (err) {
    		flex_array_free(buckets);
    		return NULL;
    	}
    
    	for (i = 0; i < n_buckets; i++)
    		INIT_HLIST_HEAD((struct hlist_head *)
    					flex_array_get(buckets, i));
    
    	return buckets;
    }
    
    static void free_buckets(struct flex_array *buckets)
    {
    	flex_array_free(buckets);
    }
    
    struct flow_table *ovs_flow_tbl_alloc(int new_size)
    {
    	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
    
    	if (!table)
    		return NULL;
    
    	table->buckets = alloc_buckets(new_size);
    
    	if (!table->buckets) {
    		kfree(table);
    		return NULL;
    	}
    	table->n_buckets = new_size;
    	table->count = 0;
    	table->node_ver = 0;
    	table->keep_flows = false;
    	get_random_bytes(&table->hash_seed, sizeof(u32));
    
    	return table;
    }
    
    void ovs_flow_tbl_destroy(struct flow_table *table)
    {
    	int i;
    
    	if (!table)
    		return;
    
    	if (table->keep_flows)
    		goto skip_flows;
    
    	for (i = 0; i < table->n_buckets; i++) {
    		struct sw_flow *flow;
    		struct hlist_head *head = flex_array_get(table->buckets, i);
    		struct hlist_node *node, *n;
    		int ver = table->node_ver;
    
    		hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
    			hlist_del_rcu(&flow->hash_node[ver]);
    			ovs_flow_free(flow);
    		}
    	}
    
    skip_flows:
    	free_buckets(table->buckets);
    	kfree(table);
    }
    
    static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
    {
    	struct flow_table *table = container_of(rcu, struct flow_table, rcu);
    
    	ovs_flow_tbl_destroy(table);
    }
    
    void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
    {
    	if (!table)
    		return;
    
    	call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
    }
    
    struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
    {
    	struct sw_flow *flow;
    	struct hlist_head *head;
    	struct hlist_node *n;
    	int ver;
    	int i;
    
    	ver = table->node_ver;
    	while (*bucket < table->n_buckets) {
    		i = 0;
    		head = flex_array_get(table->buckets, *bucket);
    		hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
    			if (i < *last) {
    				i++;
    				continue;
    			}
    			*last = i + 1;
    			return flow;
    		}
    		(*bucket)++;
    		*last = 0;
    	}
    
    	return NULL;
    }
    
    static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
    {
    	int old_ver;
    	int i;
    
    	old_ver = old->node_ver;
    	new->node_ver = !old_ver;
    
    	/* Insert in new table. */
    	for (i = 0; i < old->n_buckets; i++) {
    		struct sw_flow *flow;
    		struct hlist_head *head;
    		struct hlist_node *n;
    
    		head = flex_array_get(old->buckets, i);
    
    		hlist_for_each_entry(flow, n, head, hash_node[old_ver])
    			ovs_flow_tbl_insert(new, flow);
    	}
    	old->keep_flows = true;
    }
    
    static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
    {
    	struct flow_table *new_table;
    
    	new_table = ovs_flow_tbl_alloc(n_buckets);
    	if (!new_table)
    		return ERR_PTR(-ENOMEM);
    
    	flow_table_copy_flows(table, new_table);
    
    	return new_table;
    }
    
    struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
    {
    	return __flow_tbl_rehash(table, table->n_buckets);
    }
    
    struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
    {
    	return __flow_tbl_rehash(table, table->n_buckets * 2);
    }
    
    void ovs_flow_free(struct sw_flow *flow)
    {
    	if (unlikely(!flow))
    		return;
    
    	kfree((struct sf_flow_acts __force *)flow->sf_acts);
    	kmem_cache_free(flow_cache, flow);
    }
    
    /* RCU callback used by ovs_flow_deferred_free. */
    static void rcu_free_flow_callback(struct rcu_head *rcu)
    {
    	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
    
    	ovs_flow_free(flow);
    }
    
    /* Schedules 'flow' to be freed after the next RCU grace period.
     * The caller must hold rcu_read_lock for this to be sensible. */
    void ovs_flow_deferred_free(struct sw_flow *flow)
    {
    	call_rcu(&flow->rcu, rcu_free_flow_callback);
    }
    
    /* RCU callback used by ovs_flow_deferred_free_acts. */
    static void rcu_free_acts_callback(struct rcu_head *rcu)
    {
    	struct sw_flow_actions *sf_acts = container_of(rcu,
    			struct sw_flow_actions, rcu);
    	kfree(sf_acts);
    }
    
    /* Schedules 'sf_acts' to be freed after the next RCU grace period.
     * The caller must hold rcu_read_lock for this to be sensible. */
    void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
    {
    	call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
    }
    
    static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
    {
    	struct qtag_prefix {
    		__be16 eth_type; /* ETH_P_8021Q */
    		__be16 tci;
    	};
    	struct qtag_prefix *qp;
    
    	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
    		return 0;
    
    	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
    					 sizeof(__be16))))
    		return -ENOMEM;
    
    	qp = (struct qtag_prefix *) skb->data;
    	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
    	__skb_pull(skb, sizeof(struct qtag_prefix));
    
    	return 0;
    }
    
    static __be16 parse_ethertype(struct sk_buff *skb)
    {
    	struct llc_snap_hdr {
    		u8  dsap;  /* Always 0xAA */
    		u8  ssap;  /* Always 0xAA */
    		u8  ctrl;
    		u8  oui[3];
    		__be16 ethertype;
    	};
    	struct llc_snap_hdr *llc;
    	__be16 proto;
    
    	proto = *(__be16 *) skb->data;
    	__skb_pull(skb, sizeof(__be16));
    
    	if (ntohs(proto) >= 1536)
    		return proto;
    
    	if (skb->len < sizeof(struct llc_snap_hdr))
    		return htons(ETH_P_802_2);
    
    	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
    		return htons(0);
    
    	llc = (struct llc_snap_hdr *) skb->data;
    	if (llc->dsap != LLC_SAP_SNAP ||
    	    llc->ssap != LLC_SAP_SNAP ||
    	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
    		return htons(ETH_P_802_2);
    
    	__skb_pull(skb, sizeof(struct llc_snap_hdr));
    	return llc->ethertype;
    }
    
    static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
    			int *key_lenp, int nh_len)
    {
    	struct icmp6hdr *icmp = icmp6_hdr(skb);
    	int error = 0;
    	int key_len;
    
    	/* The ICMPv6 type and code fields use the 16-bit transport port
    	 * fields, so we need to store them in 16-bit network byte order.
    	 */
    	key->ipv6.tp.src = htons(icmp->icmp6_type);
    	key->ipv6.tp.dst = htons(icmp->icmp6_code);
    	key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    
    	if (icmp->icmp6_code == 0 &&
    	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
    	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
    		int icmp_len = skb->len - skb_transport_offset(skb);
    		struct nd_msg *nd;
    		int offset;
    
    		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
    
    		/* In order to process neighbor discovery options, we need the
    		 * entire packet.
    		 */
    		if (unlikely(icmp_len < sizeof(*nd)))
    			goto out;
    		if (unlikely(skb_linearize(skb))) {
    			error = -ENOMEM;
    			goto out;
    		}
    
    		nd = (struct nd_msg *)skb_transport_header(skb);
    		key->ipv6.nd.target = nd->target;
    		key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
    
    		icmp_len -= sizeof(*nd);
    		offset = 0;
    		while (icmp_len >= 8) {
    			struct nd_opt_hdr *nd_opt =
    				 (struct nd_opt_hdr *)(nd->opt + offset);
    			int opt_len = nd_opt->nd_opt_len * 8;
    
    			if (unlikely(!opt_len || opt_len > icmp_len))
    				goto invalid;
    
    			/* Store the link layer address if the appropriate
    			 * option is provided.  It is considered an error if
    			 * the same link layer option is specified twice.
    			 */
    			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
    			    && opt_len == 8) {
    				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
    					goto invalid;
    				memcpy(key->ipv6.nd.sll,
    				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
    			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
    				   && opt_len == 8) {
    				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
    					goto invalid;
    				memcpy(key->ipv6.nd.tll,
    				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
    			}
    
    			icmp_len -= opt_len;
    			offset += opt_len;
    		}
    	}
    
    	goto out;
    
    invalid:
    	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
    	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
    	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
    
    out:
    	*key_lenp = key_len;
    	return error;
    }
    
    /**
     * ovs_flow_extract - extracts a flow key from an Ethernet frame.
     * @skb: sk_buff that contains the frame, with skb->data pointing to the
     * Ethernet header
     * @in_port: port number on which @skb was received.
     * @key: output flow key
     * @key_lenp: length of output flow key
     *
     * The caller must ensure that skb->len >= ETH_HLEN.
     *
     * Returns 0 if successful, otherwise a negative errno value.
     *
     * Initializes @skb header pointers as follows:
     *
     *    - skb->mac_header: the Ethernet header.
     *
     *    - skb->network_header: just past the Ethernet header, or just past the
     *      VLAN header, to the first byte of the Ethernet payload.
     *
     *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
     *      on output, then just past the IP header, if one is present and
     *      of a correct length, otherwise the same as skb->network_header.
     *      For other key->dl_type values it is left untouched.
     */
    int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
    		 int *key_lenp)
    {
    	int error = 0;
    	int key_len = SW_FLOW_KEY_OFFSET(eth);
    	struct ethhdr *eth;
    
    	memset(key, 0, sizeof(*key));
    
    	key->phy.priority = skb->priority;
    	key->phy.in_port = in_port;
    
    	skb_reset_mac_header(skb);
    
    	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
    	 * header in the linear data area.
    	 */
    	eth = eth_hdr(skb);
    	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
    	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
    
    	__skb_pull(skb, 2 * ETH_ALEN);
    
    	if (vlan_tx_tag_present(skb))
    		key->eth.tci = htons(skb->vlan_tci);
    	else if (eth->h_proto == htons(ETH_P_8021Q))
    		if (unlikely(parse_vlan(skb, key)))
    			return -ENOMEM;
    
    	key->eth.type = parse_ethertype(skb);
    	if (unlikely(key->eth.type == htons(0)))
    		return -ENOMEM;
    
    	skb_reset_network_header(skb);
    	__skb_push(skb, skb->data - skb_mac_header(skb));
    
    	/* Network layer. */
    	if (key->eth.type == htons(ETH_P_IP)) {
    		struct iphdr *nh;
    		__be16 offset;
    
    		key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
    
    		error = check_iphdr(skb);
    		if (unlikely(error)) {
    			if (error == -EINVAL) {
    				skb->transport_header = skb->network_header;
    				error = 0;
    			}
    			goto out;
    		}
    
    		nh = ip_hdr(skb);
    		key->ipv4.addr.src = nh->saddr;
    		key->ipv4.addr.dst = nh->daddr;
    
    		key->ip.proto = nh->protocol;
    		key->ip.tos = nh->tos;
    		key->ip.ttl = nh->ttl;
    
    		offset = nh->frag_off & htons(IP_OFFSET);
    		if (offset) {
    			key->ip.frag = OVS_FRAG_TYPE_LATER;
    			goto out;
    		}
    		if (nh->frag_off & htons(IP_MF) ||
    			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    
    		/* Transport layer. */
    		if (key->ip.proto == IPPROTO_TCP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    			if (tcphdr_ok(skb)) {
    				struct tcphdr *tcp = tcp_hdr(skb);
    				key->ipv4.tp.src = tcp->source;
    				key->ipv4.tp.dst = tcp->dest;
    			}
    		} else if (key->ip.proto == IPPROTO_UDP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    			if (udphdr_ok(skb)) {
    				struct udphdr *udp = udp_hdr(skb);
    				key->ipv4.tp.src = udp->source;
    				key->ipv4.tp.dst = udp->dest;
    			}
    		} else if (key->ip.proto == IPPROTO_ICMP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    			if (icmphdr_ok(skb)) {
    				struct icmphdr *icmp = icmp_hdr(skb);
    				/* The ICMP type and code fields use the 16-bit
    				 * transport port fields, so we need to store
    				 * them in 16-bit network byte order. */
    				key->ipv4.tp.src = htons(icmp->type);
    				key->ipv4.tp.dst = htons(icmp->code);
    			}
    		}
    
    	} else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
    		struct arp_eth_header *arp;
    
    		arp = (struct arp_eth_header *)skb_network_header(skb);
    
    		if (arp->ar_hrd == htons(ARPHRD_ETHER)
    				&& arp->ar_pro == htons(ETH_P_IP)
    				&& arp->ar_hln == ETH_ALEN
    				&& arp->ar_pln == 4) {
    
    			/* We only match on the lower 8 bits of the opcode. */
    			if (ntohs(arp->ar_op) <= 0xff)
    				key->ip.proto = ntohs(arp->ar_op);
    
    			if (key->ip.proto == ARPOP_REQUEST
    					|| key->ip.proto == ARPOP_REPLY) {
    				memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
    				memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
    				memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
    				memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
    				key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
    			}
    		}
    	} else if (key->eth.type == htons(ETH_P_IPV6)) {
    		int nh_len;             /* IPv6 Header + Extensions */
    
    		nh_len = parse_ipv6hdr(skb, key, &key_len);
    		if (unlikely(nh_len < 0)) {
    			if (nh_len == -EINVAL)
    				skb->transport_header = skb->network_header;
    			else
    				error = nh_len;
    			goto out;
    		}
    
    		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
    			goto out;
    		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    
    		/* Transport layer. */
    		if (key->ip.proto == NEXTHDR_TCP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    			if (tcphdr_ok(skb)) {
    				struct tcphdr *tcp = tcp_hdr(skb);
    				key->ipv6.tp.src = tcp->source;
    				key->ipv6.tp.dst = tcp->dest;
    			}
    		} else if (key->ip.proto == NEXTHDR_UDP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    			if (udphdr_ok(skb)) {
    				struct udphdr *udp = udp_hdr(skb);
    				key->ipv6.tp.src = udp->source;
    				key->ipv6.tp.dst = udp->dest;
    			}
    		} else if (key->ip.proto == NEXTHDR_ICMP) {
    			key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    			if (icmp6hdr_ok(skb)) {
    				error = parse_icmpv6(skb, key, &key_len, nh_len);
    				if (error < 0)
    					goto out;
    			}
    		}
    	}
    
    out:
    	*key_lenp = key_len;
    	return error;
    }
    
    u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
    {
    	return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
    }
    
    struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
    				struct sw_flow_key *key, int key_len)
    {
    	struct sw_flow *flow;
    	struct hlist_node *n;
    	struct hlist_head *head;
    	u32 hash;
    
    	hash = ovs_flow_hash(key, key_len);
    
    	head = find_bucket(table, hash);
    	hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
    
    		if (flow->hash == hash &&
    		    !memcmp(&flow->key, key, key_len)) {
    			return flow;
    		}
    	}
    	return NULL;
    }
    
    void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
    {
    	struct hlist_head *head;
    
    	head = find_bucket(table, flow->hash);
    	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
    	table->count++;
    }
    
    void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
    {
    	hlist_del_rcu(&flow->hash_node[table->node_ver]);
    	table->count--;
    	BUG_ON(table->count < 0);
    }
    
    /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
    const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
    	[OVS_KEY_ATTR_ENCAP] = -1,
    	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
    	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
    	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
    	[OVS_KEY_ATTR_VLAN] = sizeof(__be16),
    	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
    	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
    	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
    	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
    	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
    	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
    	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
    	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
    	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
    };
    
    static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
    				  const struct nlattr *a[], u32 *attrs)
    {
    	const struct ovs_key_icmp *icmp_key;
    	const struct ovs_key_tcp *tcp_key;
    	const struct ovs_key_udp *udp_key;
    
    	switch (swkey->ip.proto) {
    	case IPPROTO_TCP:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
    		swkey->ipv4.tp.src = tcp_key->tcp_src;
    		swkey->ipv4.tp.dst = tcp_key->tcp_dst;
    		break;
    
    	case IPPROTO_UDP:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
    		swkey->ipv4.tp.src = udp_key->udp_src;
    		swkey->ipv4.tp.dst = udp_key->udp_dst;
    		break;
    
    	case IPPROTO_ICMP:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
    		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
    		swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
    		swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
    		break;
    	}
    
    	return 0;
    }
    
    static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
    				  const struct nlattr *a[], u32 *attrs)
    {
    	const struct ovs_key_icmpv6 *icmpv6_key;
    	const struct ovs_key_tcp *tcp_key;
    	const struct ovs_key_udp *udp_key;
    
    	switch (swkey->ip.proto) {
    	case IPPROTO_TCP:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_TCP);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
    		swkey->ipv6.tp.src = tcp_key->tcp_src;
    		swkey->ipv6.tp.dst = tcp_key->tcp_dst;
    		break;
    
    	case IPPROTO_UDP:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_UDP);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
    		swkey->ipv6.tp.src = udp_key->udp_src;
    		swkey->ipv6.tp.dst = udp_key->udp_dst;
    		break;
    
    	case IPPROTO_ICMPV6:
    		if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
    			return -EINVAL;
    		*attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
    
    		*key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
    		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
    		swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
    		swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
    
    		if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
    		    swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
    			const struct ovs_key_nd *nd_key;
    
    			if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
    				return -EINVAL;
    			*attrs &= ~(1 << OVS_KEY_ATTR_ND);
    
    			*key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
    			nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
    			memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
    			       sizeof(swkey->ipv6.nd.target));
    			memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
    			memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
    		}
    		break;
    	}
    
    	return 0;
    }
    
    static int parse_flow_nlattrs(const struct nlattr *attr,
    			      const struct nlattr *a[], u32 *attrsp)
    {
    	const struct nlattr *nla;
    	u32 attrs;
    	int rem;
    
    	attrs = 0;
    	nla_for_each_nested(nla, attr, rem) {
    		u16 type = nla_type(nla);
    		int expected_len;
    
    		if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
    			return -EINVAL;
    
    		expected_len = ovs_key_lens[type];
    		if (nla_len(nla) != expected_len && expected_len != -1)
    			return -EINVAL;
    
    		attrs |= 1 << type;
    		a[type] = nla;
    	}
    	if (rem)
    		return -EINVAL;
    
    	*attrsp = attrs;
    	return 0;
    }
    
    /**
     * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
     * @swkey: receives the extracted flow key.
     * @key_lenp: number of bytes used in @swkey.
     * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
     * sequence.
     */
    int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
    		      const struct nlattr *attr)
    {
    	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
    	const struct ovs_key_ethernet *eth_key;
    	int key_len;
    	u32 attrs;
    	int err;
    
    	memset(swkey, 0, sizeof(struct sw_flow_key));
    	key_len = SW_FLOW_KEY_OFFSET(eth);
    
    	err = parse_flow_nlattrs(attr, a, &attrs);
    	if (err)
    		return err;
    
    	/* Metadata attributes. */
    	if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
    		swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
    		attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
    	}
    	if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
    		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
    		if (in_port >= DP_MAX_PORTS)
    			return -EINVAL;
    		swkey->phy.in_port = in_port;