Skip to content
Snippets Groups Projects
extent-tree.c 222 KiB
Newer Older
  • Learn to ignore specific revisions
  • Chris Mason's avatar
    Chris Mason committed
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/sched.h>
    
    #include <linux/pagemap.h>
    
    #include <linux/writeback.h>
    
    #include <linux/blkdev.h>
    
    #include <linux/sort.h>
    
    #include <linux/rcupdate.h>
    
    #include <linux/kthread.h>
    
    #include <linux/ratelimit.h>
    
    Chris Mason's avatar
    Chris Mason committed
    #include "compat.h"
    
    #include "ctree.h"
    #include "disk-io.h"
    #include "print-tree.h"
    
    #include "transaction.h"
    
    David Woodhouse's avatar
    David Woodhouse committed
    #include "raid56.h"
    
    #include "locking.h"
    
    #include "free-space-cache.h"
    
    #include "math.h"
    
    /*
     * control flags for do_chunk_alloc's force field
    
     * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
     * if we really need one.
     *
     * CHUNK_ALLOC_LIMITED means to only try and allocate one
     * if we have very few chunks already allocated.  This is
     * used as part of the clustering code to help make sure
     * we have a good pool of storage to cluster in, without
     * filling the FS with empty chunks
     *
    
     * CHUNK_ALLOC_FORCE means it must try to allocate one
     *
    
     */
    enum {
    	CHUNK_ALLOC_NO_FORCE = 0,
    
    	CHUNK_ALLOC_LIMITED = 1,
    	CHUNK_ALLOC_FORCE = 2,
    
    /*
     * Control how reservations are dealt with.
     *
     * RESERVE_FREE - freeing a reservation.
     * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
     *   ENOSPC accounting
     * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
     *   bytes_may_use as the ENOSPC accounting is done elsewhere
     */
    enum {
    	RESERVE_FREE = 0,
    	RESERVE_ALLOC = 1,
    	RESERVE_ALLOC_NO_ACCOUNT = 2,
    };
    
    
    static int update_block_group(struct btrfs_root *root,
    
    			      u64 bytenr, u64 num_bytes, int alloc);
    
    static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
    				struct btrfs_root *root,
    				u64 bytenr, u64 num_bytes, u64 parent,
    				u64 root_objectid, u64 owner_objectid,
    				u64 owner_offset, int refs_to_drop,
    				struct btrfs_delayed_extent_op *extra_op);
    static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
    				    struct extent_buffer *leaf,
    				    struct btrfs_extent_item *ei);
    static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
    				      struct btrfs_root *root,
    				      u64 parent, u64 root_objectid,
    				      u64 flags, u64 owner, u64 offset,
    				      struct btrfs_key *ins, int ref_mod);
    static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
    				     struct btrfs_root *root,
    				     u64 parent, u64 root_objectid,
    				     u64 flags, struct btrfs_disk_key *key,
    				     int level, struct btrfs_key *ins);
    
    static int do_chunk_alloc(struct btrfs_trans_handle *trans,
    
    			  struct btrfs_root *extent_root, u64 flags,
    			  int force);
    
    static int find_next_key(struct btrfs_path *path, int level,
    			 struct btrfs_key *key);
    
    static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
    			    int dump_block_groups);
    
    static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
    				       u64 num_bytes, int reserve);
    
    static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
    			       u64 num_bytes);
    
    static noinline int
    block_group_cache_done(struct btrfs_block_group_cache *cache)
    {
    	smp_mb();
    	return cache->cached == BTRFS_CACHE_FINISHED;
    }
    
    
    static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
    {
    	return (cache->flags & bits) == bits;
    }
    
    
    static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
    
    {
    	atomic_inc(&cache->count);
    }
    
    void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
    {
    
    	if (atomic_dec_and_test(&cache->count)) {
    		WARN_ON(cache->pinned > 0);
    		WARN_ON(cache->reserved > 0);
    
    		kfree(cache->free_space_ctl);
    
    		kfree(cache);
    
    /*
     * this adds the block group to the fs_info rb tree for the block group
     * cache
     */
    
    static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
    
    				struct btrfs_block_group_cache *block_group)
    {
    	struct rb_node **p;
    	struct rb_node *parent = NULL;
    	struct btrfs_block_group_cache *cache;
    
    	spin_lock(&info->block_group_cache_lock);
    	p = &info->block_group_cache_tree.rb_node;
    
    	while (*p) {
    		parent = *p;
    		cache = rb_entry(parent, struct btrfs_block_group_cache,
    				 cache_node);
    		if (block_group->key.objectid < cache->key.objectid) {
    			p = &(*p)->rb_left;
    		} else if (block_group->key.objectid > cache->key.objectid) {
    			p = &(*p)->rb_right;
    		} else {
    			spin_unlock(&info->block_group_cache_lock);
    			return -EEXIST;
    		}
    	}
    
    	rb_link_node(&block_group->cache_node, parent, p);
    	rb_insert_color(&block_group->cache_node,
    			&info->block_group_cache_tree);
    
    
    	if (info->first_logical_byte > block_group->key.objectid)
    		info->first_logical_byte = block_group->key.objectid;
    
    
    	spin_unlock(&info->block_group_cache_lock);
    
    	return 0;
    }
    
    /*
     * This will return the block group at or after bytenr if contains is 0, else
     * it will return the block group that contains the bytenr
     */
    static struct btrfs_block_group_cache *
    block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
    			      int contains)
    {
    	struct btrfs_block_group_cache *cache, *ret = NULL;
    	struct rb_node *n;
    	u64 end, start;
    
    	spin_lock(&info->block_group_cache_lock);
    	n = info->block_group_cache_tree.rb_node;
    
    	while (n) {
    		cache = rb_entry(n, struct btrfs_block_group_cache,
    				 cache_node);
    		end = cache->key.objectid + cache->key.offset - 1;
    		start = cache->key.objectid;
    
    		if (bytenr < start) {
    			if (!contains && (!ret || start < ret->key.objectid))
    				ret = cache;
    			n = n->rb_left;
    		} else if (bytenr > start) {
    			if (contains && bytenr <= end) {
    				ret = cache;
    				break;
    			}
    			n = n->rb_right;
    		} else {
    			ret = cache;
    			break;
    		}
    	}
    
    	if (ret) {
    
    		btrfs_get_block_group(ret);
    
    		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
    			info->first_logical_byte = ret->key.objectid;
    	}
    
    	spin_unlock(&info->block_group_cache_lock);
    
    	return ret;
    }
    
    
    static int add_excluded_extent(struct btrfs_root *root,
    			       u64 start, u64 num_bytes)
    
    	u64 end = start + num_bytes - 1;
    	set_extent_bits(&root->fs_info->freed_extents[0],
    			start, end, EXTENT_UPTODATE, GFP_NOFS);
    	set_extent_bits(&root->fs_info->freed_extents[1],
    			start, end, EXTENT_UPTODATE, GFP_NOFS);
    	return 0;
    }
    
    static void free_excluded_extents(struct btrfs_root *root,
    				  struct btrfs_block_group_cache *cache)
    {
    	u64 start, end;
    
    	start = cache->key.objectid;
    	end = start + cache->key.offset - 1;
    
    	clear_extent_bits(&root->fs_info->freed_extents[0],
    			  start, end, EXTENT_UPTODATE, GFP_NOFS);
    	clear_extent_bits(&root->fs_info->freed_extents[1],
    			  start, end, EXTENT_UPTODATE, GFP_NOFS);
    
    static int exclude_super_stripes(struct btrfs_root *root,
    				 struct btrfs_block_group_cache *cache)
    
    {
    	u64 bytenr;
    	u64 *logical;
    	int stripe_len;
    	int i, nr, ret;
    
    
    	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
    		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
    		cache->bytes_super += stripe_len;
    		ret = add_excluded_extent(root, cache->key.objectid,
    					  stripe_len);
    
    		BUG_ON(ret); /* -ENOMEM */
    
    	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
    		bytenr = btrfs_sb_offset(i);
    		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
    				       cache->key.objectid, bytenr,
    				       0, &logical, &nr, &stripe_len);
    
    		BUG_ON(ret); /* -ENOMEM */
    
    		while (nr--) {
    
    			cache->bytes_super += stripe_len;
    
    			ret = add_excluded_extent(root, logical[nr],
    						  stripe_len);
    
    			BUG_ON(ret); /* -ENOMEM */
    
    		kfree(logical);
    	}
    	return 0;
    }
    
    
    static struct btrfs_caching_control *
    get_caching_control(struct btrfs_block_group_cache *cache)
    {
    	struct btrfs_caching_control *ctl;
    
    	spin_lock(&cache->lock);
    	if (cache->cached != BTRFS_CACHE_STARTED) {
    		spin_unlock(&cache->lock);
    		return NULL;
    	}
    
    
    	/* We're loading it the fast way, so we don't have a caching_ctl. */
    	if (!cache->caching_ctl) {
    		spin_unlock(&cache->lock);
    
    		return NULL;
    	}
    
    	ctl = cache->caching_ctl;
    	atomic_inc(&ctl->count);
    	spin_unlock(&cache->lock);
    	return ctl;
    }
    
    static void put_caching_control(struct btrfs_caching_control *ctl)
    {
    	if (atomic_dec_and_test(&ctl->count))
    		kfree(ctl);
    }
    
    
    /*
     * this is only called by cache_block_group, since we could have freed extents
     * we need to check the pinned_extents for any extents that can't be used yet
     * since their free space will be released as soon as the transaction commits.
     */
    
    static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
    
    			      struct btrfs_fs_info *info, u64 start, u64 end)
    {
    
    	u64 extent_start, extent_end, size, total_added = 0;
    
    	int ret;
    
    	while (start < end) {
    
    		ret = find_first_extent_bit(info->pinned_extents, start,
    
    					    &extent_start, &extent_end,
    
    					    EXTENT_DIRTY | EXTENT_UPTODATE,
    					    NULL);
    
    		if (extent_start <= start) {
    
    			start = extent_end + 1;
    		} else if (extent_start > start && extent_start < end) {
    			size = extent_start - start;
    
    			total_added += size;
    
    			ret = btrfs_add_free_space(block_group, start,
    						   size);
    
    			BUG_ON(ret); /* -ENOMEM or logic error */
    
    			start = extent_end + 1;
    		} else {
    			break;
    		}
    	}
    
    	if (start < end) {
    		size = end - start;
    
    		total_added += size;
    
    		ret = btrfs_add_free_space(block_group, start, size);
    
    		BUG_ON(ret); /* -ENOMEM or logic error */
    
    	return total_added;
    
    static noinline void caching_thread(struct btrfs_work *work)
    
    	struct btrfs_block_group_cache *block_group;
    	struct btrfs_fs_info *fs_info;
    	struct btrfs_caching_control *caching_ctl;
    	struct btrfs_root *extent_root;
    
    	struct btrfs_path *path;
    
    	struct extent_buffer *leaf;
    
    	struct btrfs_key key;
    
    	u64 total_found = 0;
    
    	u64 last = 0;
    	u32 nritems;
    	int ret = 0;
    
    	caching_ctl = container_of(work, struct btrfs_caching_control, work);
    	block_group = caching_ctl->block_group;
    	fs_info = block_group->fs_info;
    	extent_root = fs_info->extent_root;
    
    
    	path = btrfs_alloc_path();
    	if (!path)
    
    	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
    
    	 * We don't want to deadlock with somebody trying to allocate a new
    	 * extent for the extent root while also trying to search the extent
    	 * root to add free space.  So we skip locking and search the commit
    	 * root, since its read-only
    
    	path->search_commit_root = 1;
    
    	path->reada = 1;
    
    Yan Zheng's avatar
    Yan Zheng committed
    	key.objectid = last;
    
    	key.offset = 0;
    
    	key.type = BTRFS_EXTENT_ITEM_KEY;
    
    	mutex_lock(&caching_ctl->mutex);
    
    	/* need to make sure the commit_root doesn't disappear */
    	down_read(&fs_info->extent_commit_sem);
    
    
    	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
    
    	leaf = path->nodes[0];
    	nritems = btrfs_header_nritems(leaf);
    
    
    	while (1) {
    
    		if (btrfs_fs_closing(fs_info) > 1) {
    
    		if (path->slots[0] < nritems) {
    			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    		} else {
    			ret = find_next_key(path, 0, &key);
    			if (ret)
    
    			if (need_resched() ||
    			    btrfs_next_leaf(extent_root, path)) {
    				caching_ctl->progress = last;
    
    Chris Mason's avatar
    Chris Mason committed
    				btrfs_release_path(path);
    
    				up_read(&fs_info->extent_commit_sem);
    				mutex_unlock(&caching_ctl->mutex);
    
    				cond_resched();
    
    				goto again;
    			}
    			leaf = path->nodes[0];
    			nritems = btrfs_header_nritems(leaf);
    			continue;
    
    		if (key.objectid < block_group->key.objectid) {
    			path->slots[0]++;
    
    			continue;
    
    		if (key.objectid >= block_group->key.objectid +
    
    		    block_group->key.offset)
    
    		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
    
    			total_found += add_new_free_space(block_group,
    							  fs_info, last,
    							  key.objectid);
    
    			last = key.objectid + key.offset;
    
    			if (total_found > (1024 * 1024 * 2)) {
    				total_found = 0;
    				wake_up(&caching_ctl->wait);
    			}
    
    		path->slots[0]++;
    	}
    
    	ret = 0;
    
    	total_found += add_new_free_space(block_group, fs_info, last,
    					  block_group->key.objectid +
    					  block_group->key.offset);
    
    	caching_ctl->progress = (u64)-1;
    
    
    	spin_lock(&block_group->lock);
    
    	block_group->caching_ctl = NULL;
    
    	block_group->cached = BTRFS_CACHE_FINISHED;
    	spin_unlock(&block_group->lock);
    
    	btrfs_free_path(path);
    
    	up_read(&fs_info->extent_commit_sem);
    
    	free_excluded_extents(extent_root, block_group);
    
    	mutex_unlock(&caching_ctl->mutex);
    
    	wake_up(&caching_ctl->wait);
    
    	put_caching_control(caching_ctl);
    
    	btrfs_put_block_group(block_group);
    
    static int cache_block_group(struct btrfs_block_group_cache *cache,
    			     int load_cache_only)
    
    	struct btrfs_fs_info *fs_info = cache->fs_info;
    	struct btrfs_caching_control *caching_ctl;
    
    	int ret = 0;
    
    
    	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
    
    	if (!caching_ctl)
    		return -ENOMEM;
    
    
    	INIT_LIST_HEAD(&caching_ctl->list);
    	mutex_init(&caching_ctl->mutex);
    	init_waitqueue_head(&caching_ctl->wait);
    	caching_ctl->block_group = cache;
    	caching_ctl->progress = cache->key.objectid;
    	atomic_set(&caching_ctl->count, 1);
    	caching_ctl->work.func = caching_thread;
    
    	spin_lock(&cache->lock);
    	/*
    	 * This should be a rare occasion, but this could happen I think in the
    	 * case where one thread starts to load the space cache info, and then
    	 * some other thread starts a transaction commit which tries to do an
    	 * allocation while the other thread is still loading the space cache
    	 * info.  The previous loop should have kept us from choosing this block
    	 * group, but if we've moved to the state where we will wait on caching
    	 * block groups we need to first check if we're doing a fast load here,
    	 * so we can wait for it to finish, otherwise we could end up allocating
    	 * from a block group who's cache gets evicted for one reason or
    	 * another.
    	 */
    	while (cache->cached == BTRFS_CACHE_FAST) {
    		struct btrfs_caching_control *ctl;
    
    		ctl = cache->caching_ctl;
    		atomic_inc(&ctl->count);
    		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
    		spin_unlock(&cache->lock);
    
    		schedule();
    
    		finish_wait(&ctl->wait, &wait);
    		put_caching_control(ctl);
    		spin_lock(&cache->lock);
    	}
    
    	if (cache->cached != BTRFS_CACHE_NO) {
    		spin_unlock(&cache->lock);
    		kfree(caching_ctl);
    
    	}
    	WARN_ON(cache->caching_ctl);
    	cache->caching_ctl = caching_ctl;
    	cache->cached = BTRFS_CACHE_FAST;
    	spin_unlock(&cache->lock);
    
    	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
    
    		ret = load_free_space_cache(fs_info, cache);
    
    		spin_lock(&cache->lock);
    		if (ret == 1) {
    
    			cache->caching_ctl = NULL;
    
    			cache->cached = BTRFS_CACHE_FINISHED;
    			cache->last_byte_to_unpin = (u64)-1;
    		} else {
    
    			if (load_cache_only) {
    				cache->caching_ctl = NULL;
    				cache->cached = BTRFS_CACHE_NO;
    			} else {
    				cache->cached = BTRFS_CACHE_STARTED;
    			}
    
    		}
    		spin_unlock(&cache->lock);
    
    		wake_up(&caching_ctl->wait);
    
    			put_caching_control(caching_ctl);
    
    			free_excluded_extents(fs_info->extent_root, cache);
    
    	} else {
    		/*
    		 * We are not going to do the fast caching, set cached to the
    		 * appropriate value and wakeup any waiters.
    		 */
    		spin_lock(&cache->lock);
    		if (load_cache_only) {
    			cache->caching_ctl = NULL;
    			cache->cached = BTRFS_CACHE_NO;
    		} else {
    			cache->cached = BTRFS_CACHE_STARTED;
    		}
    		spin_unlock(&cache->lock);
    		wake_up(&caching_ctl->wait);
    
    	if (load_cache_only) {
    		put_caching_control(caching_ctl);
    
    	down_write(&fs_info->extent_commit_sem);
    
    	atomic_inc(&caching_ctl->count);
    
    	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
    	up_write(&fs_info->extent_commit_sem);
    
    
    	btrfs_get_block_group(cache);
    
    	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
    
    /*
     * return the block group that starts at or after bytenr
     */
    
    static struct btrfs_block_group_cache *
    btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
    
    	struct btrfs_block_group_cache *cache;
    
    	cache = block_group_cache_tree_search(info, bytenr, 0);
    
    	return cache;
    
     * return the block group that contains the given bytenr
    
    struct btrfs_block_group_cache *btrfs_lookup_block_group(
    						 struct btrfs_fs_info *info,
    						 u64 bytenr)
    
    	struct btrfs_block_group_cache *cache;
    
    	cache = block_group_cache_tree_search(info, bytenr, 1);
    
    	return cache;
    
    static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
    						  u64 flags)
    
    	struct list_head *head = &info->space_info;
    	struct btrfs_space_info *found;
    
    	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(found, head, list) {
    
    		if (found->flags & flags) {
    
    			rcu_read_unlock();
    
    			return found;
    
    	rcu_read_unlock();
    
    	return NULL;
    
    /*
     * after adding space to the filesystem, we need to clear the full flags
     * on all the space infos.
     */
    void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
    {
    	struct list_head *head = &info->space_info;
    	struct btrfs_space_info *found;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(found, head, list)
    		found->full = 0;
    	rcu_read_unlock();
    }
    
    
    u64 btrfs_find_block_group(struct btrfs_root *root,
    			   u64 search_start, u64 search_hint, int owner)
    
    	struct btrfs_block_group_cache *cache;
    
    	u64 used;
    
    	u64 last = max(search_hint, search_start);
    	u64 group_start = 0;
    
    	int full_search = 0;
    
    	int factor = 9;
    
    	int wrapped = 0;
    
    	while (1) {
    		cache = btrfs_lookup_first_block_group(root->fs_info, last);
    
    		if (!cache)
    			break;
    
    		spin_lock(&cache->lock);
    
    		last = cache->key.objectid + cache->key.offset;
    		used = btrfs_block_group_used(&cache->item);
    
    
    		if ((full_search || !cache->ro) &&
    		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
    
    			if (used + cache->pinned + cache->reserved <
    
    			    div_factor(cache->key.offset, factor)) {
    				group_start = cache->key.objectid;
    
    				spin_unlock(&cache->lock);
    
    				btrfs_put_block_group(cache);
    
    		spin_unlock(&cache->lock);
    
    		btrfs_put_block_group(cache);
    
    	if (!wrapped) {
    		last = search_start;
    		wrapped = 1;
    		goto again;
    	}
    	if (!full_search && factor < 10) {
    
    		last = search_start;
    
    		factor = 10;
    
    	return group_start;
    
    /* simple helper to search for an existing extent at a given offset */
    
    int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
    
    	struct btrfs_path *path;
    
    	path = btrfs_alloc_path();
    
    	if (!path)
    		return -ENOMEM;
    
    
    	key.objectid = start;
    	key.offset = len;
    	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
    	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
    				0, 0);
    
    	btrfs_free_path(path);
    
    /*
     * helper function to lookup reference count and flags of extent.
     *
     * the head node for delayed ref is used to store the sum of all the
     * reference count modifications queued up in the rbtree. the head
     * node may also store the extent flags to set. This way you can check
     * to see what the reference count and extent flags would be if all of
     * the delayed refs are not processed.
     */
    int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
    			     struct btrfs_root *root, u64 bytenr,
    			     u64 num_bytes, u64 *refs, u64 *flags)
    {
    	struct btrfs_delayed_ref_head *head;
    	struct btrfs_delayed_ref_root *delayed_refs;
    	struct btrfs_path *path;
    	struct btrfs_extent_item *ei;
    	struct extent_buffer *leaf;
    	struct btrfs_key key;
    	u32 item_size;
    	u64 num_refs;
    	u64 extent_flags;
    	int ret;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	key.objectid = bytenr;
    	key.type = BTRFS_EXTENT_ITEM_KEY;
    	key.offset = num_bytes;
    	if (!trans) {
    		path->skip_locking = 1;
    		path->search_commit_root = 1;
    	}
    again:
    	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
    				&key, path, 0, 0);
    	if (ret < 0)
    		goto out_free;
    
    	if (ret == 0) {
    		leaf = path->nodes[0];
    		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
    		if (item_size >= sizeof(*ei)) {
    			ei = btrfs_item_ptr(leaf, path->slots[0],
    					    struct btrfs_extent_item);
    			num_refs = btrfs_extent_refs(leaf, ei);
    			extent_flags = btrfs_extent_flags(leaf, ei);
    		} else {
    #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
    			struct btrfs_extent_item_v0 *ei0;
    			BUG_ON(item_size != sizeof(*ei0));
    			ei0 = btrfs_item_ptr(leaf, path->slots[0],
    					     struct btrfs_extent_item_v0);
    			num_refs = btrfs_extent_refs_v0(leaf, ei0);
    			/* FIXME: this isn't correct for data */
    			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
    #else
    			BUG();
    #endif
    		}
    		BUG_ON(num_refs == 0);
    	} else {
    		num_refs = 0;
    		extent_flags = 0;
    		ret = 0;
    	}
    
    	if (!trans)
    		goto out;
    
    	delayed_refs = &trans->transaction->delayed_refs;
    	spin_lock(&delayed_refs->lock);
    	head = btrfs_find_delayed_ref_head(trans, bytenr);
    	if (head) {
    		if (!mutex_trylock(&head->mutex)) {
    			atomic_inc(&head->node.refs);
    			spin_unlock(&delayed_refs->lock);
    
    
    			btrfs_release_path(path);
    
    			/*
    			 * Mutex was contended, block until it's released and try
    			 * again
    			 */
    
    			mutex_lock(&head->mutex);
    			mutex_unlock(&head->mutex);
    			btrfs_put_delayed_ref(&head->node);
    			goto again;
    		}
    		if (head->extent_op && head->extent_op->update_flags)
    			extent_flags |= head->extent_op->flags_to_set;
    		else
    			BUG_ON(num_refs == 0);
    
    		num_refs += head->node.ref_mod;
    		mutex_unlock(&head->mutex);
    	}
    	spin_unlock(&delayed_refs->lock);
    out:
    	WARN_ON(num_refs == 0);
    	if (refs)
    		*refs = num_refs;
    	if (flags)
    		*flags = extent_flags;
    out_free:
    	btrfs_free_path(path);
    	return ret;
    }
    
    
    /*
     * Back reference rules.  Back refs have three main goals:
     *
     * 1) differentiate between all holders of references to an extent so that
     *    when a reference is dropped we can make sure it was a valid reference
     *    before freeing the extent.
     *
     * 2) Provide enough information to quickly find the holders of an extent
     *    if we notice a given block is corrupted or bad.
     *
     * 3) Make it easy to migrate blocks for FS shrinking or storage pool
     *    maintenance.  This is actually the same as #2, but with a slightly
     *    different use case.
     *
    
     * There are two kinds of back refs. The implicit back refs is optimized
     * for pointers in non-shared tree blocks. For a given pointer in a block,
     * back refs of this kind provide information about the block's owner tree
     * and the pointer's key. These information allow us to find the block by
     * b-tree searching. The full back refs is for pointers in tree blocks not
     * referenced by their owner trees. The location of tree block is recorded
     * in the back refs. Actually the full back refs is generic, and can be
     * used in all cases the implicit back refs is used. The major shortcoming
     * of the full back refs is its overhead. Every time a tree block gets
     * COWed, we have to update back refs entry for all pointers in it.
     *
     * For a newly allocated tree block, we use implicit back refs for
     * pointers in it. This means most tree related operations only involve
     * implicit back refs. For a tree block created in old transaction, the
     * only way to drop a reference to it is COW it. So we can detect the
     * event that tree block loses its owner tree's reference and do the
     * back refs conversion.
     *
     * When a tree block is COW'd through a tree, there are four cases:
     *
     * The reference count of the block is one and the tree is the block's
     * owner tree. Nothing to do in this case.
     *
     * The reference count of the block is one and the tree is not the
     * block's owner tree. In this case, full back refs is used for pointers
     * in the block. Remove these full back refs, add implicit back refs for
     * every pointers in the new block.
     *
     * The reference count of the block is greater than one and the tree is
     * the block's owner tree. In this case, implicit back refs is used for
     * pointers in the block. Add full back refs for every pointers in the
     * block, increase lower level extents' reference counts. The original
     * implicit back refs are entailed to the new block.
     *
     * The reference count of the block is greater than one and the tree is
     * not the block's owner tree. Add implicit back refs for every pointer in
     * the new block, increase lower level extents' reference count.
     *
     * Back Reference Key composing:
     *
     * The key objectid corresponds to the first byte in the extent,
     * The key type is used to differentiate between types of back refs.
     * There are different meanings of the key offset for different types
     * of back refs.
     *
    
     * File extents can be referenced by:
     *
     * - multiple snapshots, subvolumes, or different generations in one subvol
    
     * - different files inside a single subvolume
    
     * - different offsets inside a file (bookend extents in file.c)
     *
    
     * The extent ref structure for the implicit back refs has fields for:
    
     *
     * - Objectid of the subvolume root
     * - objectid of the file holding the reference
    
     * - original offset in the file
     * - how many bookend extents
    
     * The key offset for the implicit back refs is hash of the first
     * three fields.
    
     * The extent ref structure for the full back refs has field for:
    
     * - number of pointers in the tree leaf
    
     * The key offset for the implicit back refs is the first byte of
     * the tree leaf
    
     * When a file extent is allocated, The implicit back refs is used.
     * the fields are filled in:
    
     *     (root_key.objectid, inode objectid, offset in file, 1)
    
     * When a file extent is removed file truncation, we find the
     * corresponding implicit back refs and check the following fields:
    
     *     (btrfs_header_owner(leaf), inode objectid, offset in file)
    
     * Btree extents can be referenced by:
    
     * - Different subvolumes
    
     * Both the implicit back refs and the full back refs for tree blocks
     * only consist of key. The key offset for the implicit back refs is
     * objectid of block's owner tree. The key offset for the full back refs
     * is the first byte of parent block.
    
     * When implicit back refs is used, information about the lowest key and
     * level of the tree block are required. These information are stored in
     * tree block info structure.
    
    #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
    static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
    				  struct btrfs_root *root,
    				  struct btrfs_path *path,
    				  u64 owner, u32 extra_size)
    
    	struct btrfs_extent_item *item;
    	struct btrfs_extent_item_v0 *ei0;
    	struct btrfs_extent_ref_v0 *ref0;
    	struct btrfs_tree_block_info *bi;
    	struct extent_buffer *leaf;
    
    	struct btrfs_key found_key;
    	u32 new_size = sizeof(*item);
    	u64 refs;
    	int ret;
    
    	leaf = path->nodes[0];
    	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
    
    	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
    	ei0 = btrfs_item_ptr(leaf, path->slots[0],
    			     struct btrfs_extent_item_v0);
    	refs = btrfs_extent_refs_v0(leaf, ei0);
    
    	if (owner == (u64)-1) {
    		while (1) {
    			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
    				ret = btrfs_next_leaf(root, path);
    				if (ret < 0)
    					return ret;
    
    				BUG_ON(ret > 0); /* Corruption */
    
    				leaf = path->nodes[0];
    			}
    			btrfs_item_key_to_cpu(leaf, &found_key,
    					      path->slots[0]);
    			BUG_ON(key.objectid != found_key.objectid);
    			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
    				path->slots[0]++;
    				continue;
    			}
    			ref0 = btrfs_item_ptr(leaf, path->slots[0],
    					      struct btrfs_extent_ref_v0);
    			owner = btrfs_ref_objectid_v0(leaf, ref0);
    			break;
    		}
    	}
    
    	btrfs_release_path(path);
    
    
    	if (owner < BTRFS_FIRST_FREE_OBJECTID)
    		new_size += sizeof(*bi);
    
    	new_size -= sizeof(*ei0);
    	ret = btrfs_search_slot(trans, root, &key, path,
    				new_size + extra_size, 1);
    	if (ret < 0)
    		return ret;
    
    	BUG_ON(ret); /* Corruption */
    
    	btrfs_extend_item(trans, root, path, new_size);