In particular, if $n\geq2$, we have that $a_n>0$ and $2-a_n^2\leq0$. Thus, $a_{n+1}-a_n\leq0$ for $n\geq2$. An~application of Theorem~\ref{thm:bndmonseq} (resp.\ the slight generalisation in Remark %\ref{rem:monseqgen}
In particular, if $n\geq2$, we have that $a_n>0$ and $2-a_n^2\leq0$. Thus, $a_{n+1}-a_n\leq0$ for $n\geq2$. An~application of Theorem~\ref{thm:monbndseq} (resp.\ the slight generalisation in Remark %\ref{rem:monseqgen}
from above)
now leads to the existence of some $a\in\mathbb{R}$ with $a=\lim_{n \to\infty}a_n$.\\[2ex]
To compute the limit, we make use of the relation $\lim_{n \to\infty}a_n=\lim_{n\to\infty}a_{n+1}$ (follows directly from the Definition of limits) and the formulae for limits. This yields