Skip to content
Snippets Groups Projects
flow.c 54.9 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright (c) 2007-2013 Nicira, Inc.
    
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of version 2 of the GNU General Public
     * License as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
     * 02110-1301, USA
     */
    
    #include "flow.h"
    #include "datapath.h"
    #include <linux/uaccess.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/if_ether.h>
    #include <linux/if_vlan.h>
    #include <net/llc_pdu.h>
    #include <linux/kernel.h>
    #include <linux/jhash.h>
    #include <linux/jiffies.h>
    #include <linux/llc.h>
    #include <linux/module.h>
    #include <linux/in.h>
    #include <linux/rcupdate.h>
    #include <linux/if_arp.h>
    #include <linux/ip.h>
    #include <linux/ipv6.h>
    
    #include <linux/sctp.h>
    
    #include <linux/tcp.h>
    #include <linux/udp.h>
    #include <linux/icmp.h>
    #include <linux/icmpv6.h>
    #include <linux/rculist.h>
    #include <net/ip.h>
    
    #include <net/ip_tunnels.h>
    
    #include <net/ipv6.h>
    #include <net/ndisc.h>
    
    static struct kmem_cache *flow_cache;
    
    
    static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask,
    		struct sw_flow_key_range *range, u8 val);
    
    static void update_range__(struct sw_flow_match *match,
    			  size_t offset, size_t size, bool is_mask)
    {
    	struct sw_flow_key_range *range = NULL;
    
    	size_t start = rounddown(offset, sizeof(long));
    	size_t end = roundup(offset + size, sizeof(long));
    
    
    	if (!is_mask)
    		range = &match->range;
    	else if (match->mask)
    		range = &match->mask->range;
    
    	if (!range)
    		return;
    
    	if (range->start == range->end) {
    		range->start = start;
    		range->end = end;
    		return;
    	}
    
    	if (range->start > start)
    		range->start = start;
    
    	if (range->end < end)
    		range->end = end;
    }
    
    #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
    	do { \
    		update_range__(match, offsetof(struct sw_flow_key, field),  \
    				     sizeof((match)->key->field), is_mask); \
    		if (is_mask) {						    \
    			if ((match)->mask)				    \
    				(match)->mask->key.field = value;	    \
    		} else {                                                    \
    			(match)->key->field = value;		            \
    		}                                                           \
    	} while (0)
    
    #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
    	do { \
    		update_range__(match, offsetof(struct sw_flow_key, field),  \
    				len, is_mask);                              \
    		if (is_mask) {						    \
    			if ((match)->mask)				    \
    				memcpy(&(match)->mask->key.field, value_p, len);\
    		} else {                                                    \
    			memcpy(&(match)->key->field, value_p, len);         \
    		}                                                           \
    	} while (0)
    
    
    static u16 range_n_bytes(const struct sw_flow_key_range *range)
    {
    	return range->end - range->start;
    }
    
    
    void ovs_match_init(struct sw_flow_match *match,
    		    struct sw_flow_key *key,
    		    struct sw_flow_mask *mask)
    {
    	memset(match, 0, sizeof(*match));
    	match->key = key;
    	match->mask = mask;
    
    	memset(key, 0, sizeof(*key));
    
    	if (mask) {
    		memset(&mask->key, 0, sizeof(mask->key));
    		mask->range.start = mask->range.end = 0;
    	}
    }
    
    static bool ovs_match_validate(const struct sw_flow_match *match,
    		u64 key_attrs, u64 mask_attrs)
    {
    	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
    	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
    
    	/* The following mask attributes allowed only if they
    	 * pass the validation tests. */
    	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
    			| (1 << OVS_KEY_ATTR_IPV6)
    			| (1 << OVS_KEY_ATTR_TCP)
    			| (1 << OVS_KEY_ATTR_UDP)
    
    			| (1 << OVS_KEY_ATTR_SCTP)
    
    			| (1 << OVS_KEY_ATTR_ICMP)
    			| (1 << OVS_KEY_ATTR_ICMPV6)
    			| (1 << OVS_KEY_ATTR_ARP)
    			| (1 << OVS_KEY_ATTR_ND));
    
    	/* Always allowed mask fields. */
    	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
    		       | (1 << OVS_KEY_ATTR_IN_PORT)
    		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
    
    	/* Check key attributes. */
    	if (match->key->eth.type == htons(ETH_P_ARP)
    			|| match->key->eth.type == htons(ETH_P_RARP)) {
    		key_expected |= 1 << OVS_KEY_ATTR_ARP;
    		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
    			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
    	}
    
    	if (match->key->eth.type == htons(ETH_P_IP)) {
    		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
    		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
    			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
    
    		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
    			if (match->key->ip.proto == IPPROTO_UDP) {
    				key_expected |= 1 << OVS_KEY_ATTR_UDP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
    			}
    
    
    			if (match->key->ip.proto == IPPROTO_SCTP) {
    				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
    			}
    
    
    			if (match->key->ip.proto == IPPROTO_TCP) {
    				key_expected |= 1 << OVS_KEY_ATTR_TCP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
    			}
    
    			if (match->key->ip.proto == IPPROTO_ICMP) {
    				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
    			}
    		}
    	}
    
    	if (match->key->eth.type == htons(ETH_P_IPV6)) {
    		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
    		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
    			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
    
    		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
    			if (match->key->ip.proto == IPPROTO_UDP) {
    				key_expected |= 1 << OVS_KEY_ATTR_UDP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
    			}
    
    
    			if (match->key->ip.proto == IPPROTO_SCTP) {
    				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
    			}
    
    
    			if (match->key->ip.proto == IPPROTO_TCP) {
    				key_expected |= 1 << OVS_KEY_ATTR_TCP;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
    			}
    
    			if (match->key->ip.proto == IPPROTO_ICMPV6) {
    				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
    				if (match->mask && (match->mask->key.ip.proto == 0xff))
    					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
    
    				if (match->key->ipv6.tp.src ==
    						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
    				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
    					key_expected |= 1 << OVS_KEY_ATTR_ND;
    					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff)))
    						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
    				}
    			}
    		}
    	}
    
    	if ((key_attrs & key_expected) != key_expected) {
    		/* Key attributes check failed. */
    		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n",
    				key_attrs, key_expected);
    		return false;
    	}
    
    	if ((mask_attrs & mask_allowed) != mask_attrs) {
    		/* Mask attributes check failed. */
    		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n",
    				mask_attrs, mask_allowed);
    		return false;
    	}
    
    	return true;
    }
    
    
    static int check_header(struct sk_buff *skb, int len)
    {
    	if (unlikely(skb->len < len))
    		return -EINVAL;
    	if (unlikely(!pskb_may_pull(skb, len)))
    		return -ENOMEM;
    	return 0;
    }
    
    static bool arphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_network_offset(skb) +
    				  sizeof(struct arp_eth_header));
    }
    
    static int check_iphdr(struct sk_buff *skb)
    {
    	unsigned int nh_ofs = skb_network_offset(skb);
    	unsigned int ip_len;
    	int err;
    
    	err = check_header(skb, nh_ofs + sizeof(struct iphdr));
    	if (unlikely(err))
    		return err;
    
    	ip_len = ip_hdrlen(skb);
    	if (unlikely(ip_len < sizeof(struct iphdr) ||
    		     skb->len < nh_ofs + ip_len))
    		return -EINVAL;
    
    	skb_set_transport_header(skb, nh_ofs + ip_len);
    	return 0;
    }
    
    static bool tcphdr_ok(struct sk_buff *skb)
    {
    	int th_ofs = skb_transport_offset(skb);
    	int tcp_len;
    
    	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
    		return false;
    
    	tcp_len = tcp_hdrlen(skb);
    	if (unlikely(tcp_len < sizeof(struct tcphdr) ||
    		     skb->len < th_ofs + tcp_len))
    		return false;
    
    	return true;
    }
    
    static bool udphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct udphdr));
    }
    
    
    static bool sctphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct sctphdr));
    }
    
    
    static bool icmphdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct icmphdr));
    }
    
    u64 ovs_flow_used_time(unsigned long flow_jiffies)
    {
    	struct timespec cur_ts;
    	u64 cur_ms, idle_ms;
    
    	ktime_get_ts(&cur_ts);
    	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
    	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
    		 cur_ts.tv_nsec / NSEC_PER_MSEC;
    
    	return cur_ms - idle_ms;
    }
    
    
    static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
    
    {
    	unsigned int nh_ofs = skb_network_offset(skb);
    	unsigned int nh_len;
    	int payload_ofs;
    	struct ipv6hdr *nh;
    	uint8_t nexthdr;
    	__be16 frag_off;
    	int err;
    
    	err = check_header(skb, nh_ofs + sizeof(*nh));
    	if (unlikely(err))
    		return err;
    
    	nh = ipv6_hdr(skb);
    	nexthdr = nh->nexthdr;
    	payload_ofs = (u8 *)(nh + 1) - skb->data;
    
    	key->ip.proto = NEXTHDR_NONE;
    	key->ip.tos = ipv6_get_dsfield(nh);
    	key->ip.ttl = nh->hop_limit;
    	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
    	key->ipv6.addr.src = nh->saddr;
    	key->ipv6.addr.dst = nh->daddr;
    
    	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
    	if (unlikely(payload_ofs < 0))
    		return -EINVAL;
    
    	if (frag_off) {
    		if (frag_off & htons(~0x7))
    			key->ip.frag = OVS_FRAG_TYPE_LATER;
    		else
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    	}
    
    	nh_len = payload_ofs - nh_ofs;
    	skb_set_transport_header(skb, nh_ofs + nh_len);
    	key->ip.proto = nexthdr;
    	return nh_len;
    }
    
    static bool icmp6hdr_ok(struct sk_buff *skb)
    {
    	return pskb_may_pull(skb, skb_transport_offset(skb) +
    				  sizeof(struct icmp6hdr));
    }
    
    
    void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src,
    		       const struct sw_flow_mask *mask)
    {
    
    	const long *m = (long *)((u8 *)&mask->key + mask->range.start);
    	const long *s = (long *)((u8 *)src + mask->range.start);
    	long *d = (long *)((u8 *)dst + mask->range.start);
    
    	/* The memory outside of the 'mask->range' are not set since
    	 * further operations on 'dst' only uses contents within
    	 * 'mask->range'.
    	 */
    	for (i = 0; i < range_n_bytes(&mask->range); i += sizeof(long))
    		*d++ = *s++ & *m++;
    
    #define TCP_FLAGS_OFFSET 13
    #define TCP_FLAG_MASK 0x3f
    
    void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
    {
    	u8 tcp_flags = 0;
    
    
    	if ((flow->key.eth.type == htons(ETH_P_IP) ||
    	     flow->key.eth.type == htons(ETH_P_IPV6)) &&
    
    	    flow->key.ip.proto == IPPROTO_TCP &&
    	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
    
    		u8 *tcp = (u8 *)tcp_hdr(skb);
    		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
    	}
    
    	spin_lock(&flow->lock);
    	flow->used = jiffies;
    	flow->packet_count++;
    	flow->byte_count += skb->len;
    	flow->tcp_flags |= tcp_flags;
    	spin_unlock(&flow->lock);
    }
    
    
    struct sw_flow_actions *ovs_flow_actions_alloc(int size)
    
    {
    	struct sw_flow_actions *sfa;
    
    
    	if (size > MAX_ACTIONS_BUFSIZE)
    
    		return ERR_PTR(-EINVAL);
    
    
    	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
    
    	if (!sfa)
    		return ERR_PTR(-ENOMEM);
    
    
    	sfa->actions_len = 0;
    
    	return sfa;
    }
    
    struct sw_flow *ovs_flow_alloc(void)
    {
    	struct sw_flow *flow;
    
    	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
    	if (!flow)
    		return ERR_PTR(-ENOMEM);
    
    	spin_lock_init(&flow->lock);
    	flow->sf_acts = NULL;
    
    	flow->mask = NULL;
    
    
    	return flow;
    }
    
    static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
    {
    	hash = jhash_1word(hash, table->hash_seed);
    	return flex_array_get(table->buckets,
    				(hash & (table->n_buckets - 1)));
    }
    
    static struct flex_array *alloc_buckets(unsigned int n_buckets)
    {
    	struct flex_array *buckets;
    	int i, err;
    
    
    	buckets = flex_array_alloc(sizeof(struct hlist_head),
    
    				   n_buckets, GFP_KERNEL);
    	if (!buckets)
    		return NULL;
    
    	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
    	if (err) {
    		flex_array_free(buckets);
    		return NULL;
    	}
    
    	for (i = 0; i < n_buckets; i++)
    		INIT_HLIST_HEAD((struct hlist_head *)
    					flex_array_get(buckets, i));
    
    	return buckets;
    }
    
    static void free_buckets(struct flex_array *buckets)
    {
    	flex_array_free(buckets);
    }
    
    
    static struct flow_table *__flow_tbl_alloc(int new_size)
    
    {
    	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
    
    	if (!table)
    		return NULL;
    
    	table->buckets = alloc_buckets(new_size);
    
    	if (!table->buckets) {
    		kfree(table);
    		return NULL;
    	}
    	table->n_buckets = new_size;
    	table->count = 0;
    	table->node_ver = 0;
    	table->keep_flows = false;
    	get_random_bytes(&table->hash_seed, sizeof(u32));
    
    	table->mask_list = NULL;
    
    static void __flow_tbl_destroy(struct flow_table *table)
    
    {
    	int i;
    
    	if (table->keep_flows)
    		goto skip_flows;
    
    	for (i = 0; i < table->n_buckets; i++) {
    		struct sw_flow *flow;
    		struct hlist_head *head = flex_array_get(table->buckets, i);
    
    		struct hlist_node *n;
    
    		int ver = table->node_ver;
    
    
    		hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
    
    			hlist_del(&flow->hash_node[ver]);
    
    			ovs_flow_free(flow, false);
    
    	BUG_ON(!list_empty(table->mask_list));
    	kfree(table->mask_list);
    
    
    skip_flows:
    	free_buckets(table->buckets);
    	kfree(table);
    }
    
    
    struct flow_table *ovs_flow_tbl_alloc(int new_size)
    {
    	struct flow_table *table = __flow_tbl_alloc(new_size);
    
    	if (!table)
    		return NULL;
    
    	table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL);
    	if (!table->mask_list) {
    		table->keep_flows = true;
    		__flow_tbl_destroy(table);
    		return NULL;
    	}
    	INIT_LIST_HEAD(table->mask_list);
    
    	return table;
    }
    
    
    static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
    {
    	struct flow_table *table = container_of(rcu, struct flow_table, rcu);
    
    
    	__flow_tbl_destroy(table);
    
    void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred)
    
    	if (deferred)
    		call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
    	else
    		__flow_tbl_destroy(table);
    
    struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last)
    
    {
    	struct sw_flow *flow;
    	struct hlist_head *head;
    	int ver;
    	int i;
    
    	ver = table->node_ver;
    	while (*bucket < table->n_buckets) {
    		i = 0;
    		head = flex_array_get(table->buckets, *bucket);
    
    		hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
    
    			if (i < *last) {
    				i++;
    				continue;
    			}
    			*last = i + 1;
    			return flow;
    		}
    		(*bucket)++;
    		*last = 0;
    	}
    
    	return NULL;
    }
    
    
    static void __tbl_insert(struct flow_table *table, struct sw_flow *flow)
    
    	head = find_bucket(table, flow->hash);
    	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
    
    static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
    {
    	int old_ver;
    	int i;
    
    	old_ver = old->node_ver;
    	new->node_ver = !old_ver;
    
    	/* Insert in new table. */
    	for (i = 0; i < old->n_buckets; i++) {
    		struct sw_flow *flow;
    		struct hlist_head *head;
    
    		head = flex_array_get(old->buckets, i);
    
    
    		hlist_for_each_entry(flow, head, hash_node[old_ver])
    
    			__tbl_insert(new, flow);
    
    
    	new->mask_list = old->mask_list;
    
    	old->keep_flows = true;
    }
    
    static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
    {
    	struct flow_table *new_table;
    
    
    	new_table = __flow_tbl_alloc(n_buckets);
    
    	if (!new_table)
    		return ERR_PTR(-ENOMEM);
    
    	flow_table_copy_flows(table, new_table);
    
    	return new_table;
    }
    
    struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
    {
    	return __flow_tbl_rehash(table, table->n_buckets);
    }
    
    struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
    {
    	return __flow_tbl_rehash(table, table->n_buckets * 2);
    }
    
    
    static void __flow_free(struct sw_flow *flow)
    
    {
    	kfree((struct sf_flow_acts __force *)flow->sf_acts);
    	kmem_cache_free(flow_cache, flow);
    }
    
    static void rcu_free_flow_callback(struct rcu_head *rcu)
    {
    	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
    
    
    	__flow_free(flow);
    
    void ovs_flow_free(struct sw_flow *flow, bool deferred)
    
    	if (!flow)
    		return;
    
    	ovs_sw_flow_mask_del_ref(flow->mask, deferred);
    
    	if (deferred)
    		call_rcu(&flow->rcu, rcu_free_flow_callback);
    	else
    		__flow_free(flow);
    
    }
    
    /* Schedules 'sf_acts' to be freed after the next RCU grace period.
     * The caller must hold rcu_read_lock for this to be sensible. */
    void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
    {
    
    	kfree_rcu(sf_acts, rcu);
    
    }
    
    static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
    {
    	struct qtag_prefix {
    		__be16 eth_type; /* ETH_P_8021Q */
    		__be16 tci;
    	};
    	struct qtag_prefix *qp;
    
    	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
    		return 0;
    
    	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
    					 sizeof(__be16))))
    		return -ENOMEM;
    
    	qp = (struct qtag_prefix *) skb->data;
    	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
    	__skb_pull(skb, sizeof(struct qtag_prefix));
    
    	return 0;
    }
    
    static __be16 parse_ethertype(struct sk_buff *skb)
    {
    	struct llc_snap_hdr {
    		u8  dsap;  /* Always 0xAA */
    		u8  ssap;  /* Always 0xAA */
    		u8  ctrl;
    		u8  oui[3];
    		__be16 ethertype;
    	};
    	struct llc_snap_hdr *llc;
    	__be16 proto;
    
    	proto = *(__be16 *) skb->data;
    	__skb_pull(skb, sizeof(__be16));
    
    
    Simon Horman's avatar
    Simon Horman committed
    	if (ntohs(proto) >= ETH_P_802_3_MIN)
    
    		return proto;
    
    	if (skb->len < sizeof(struct llc_snap_hdr))
    		return htons(ETH_P_802_2);
    
    	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
    		return htons(0);
    
    	llc = (struct llc_snap_hdr *) skb->data;
    	if (llc->dsap != LLC_SAP_SNAP ||
    	    llc->ssap != LLC_SAP_SNAP ||
    	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
    		return htons(ETH_P_802_2);
    
    	__skb_pull(skb, sizeof(struct llc_snap_hdr));
    
    Simon Horman's avatar
    Simon Horman committed
    	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
    
    		return llc->ethertype;
    
    	return htons(ETH_P_802_2);
    
    }
    
    static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
    
    			int nh_len)
    
    {
    	struct icmp6hdr *icmp = icmp6_hdr(skb);
    
    	/* The ICMPv6 type and code fields use the 16-bit transport port
    	 * fields, so we need to store them in 16-bit network byte order.
    	 */
    	key->ipv6.tp.src = htons(icmp->icmp6_type);
    	key->ipv6.tp.dst = htons(icmp->icmp6_code);
    
    	if (icmp->icmp6_code == 0 &&
    	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
    	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
    		int icmp_len = skb->len - skb_transport_offset(skb);
    		struct nd_msg *nd;
    		int offset;
    
    		/* In order to process neighbor discovery options, we need the
    		 * entire packet.
    		 */
    		if (unlikely(icmp_len < sizeof(*nd)))
    
    			return 0;
    
    		if (unlikely(skb_linearize(skb)))
    			return -ENOMEM;
    
    
    		nd = (struct nd_msg *)skb_transport_header(skb);
    		key->ipv6.nd.target = nd->target;
    
    		icmp_len -= sizeof(*nd);
    		offset = 0;
    		while (icmp_len >= 8) {
    			struct nd_opt_hdr *nd_opt =
    				 (struct nd_opt_hdr *)(nd->opt + offset);
    			int opt_len = nd_opt->nd_opt_len * 8;
    
    			if (unlikely(!opt_len || opt_len > icmp_len))
    
    				return 0;
    
    
    			/* Store the link layer address if the appropriate
    			 * option is provided.  It is considered an error if
    			 * the same link layer option is specified twice.
    			 */
    			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
    			    && opt_len == 8) {
    				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
    					goto invalid;
    				memcpy(key->ipv6.nd.sll,
    				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
    			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
    				   && opt_len == 8) {
    				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
    					goto invalid;
    				memcpy(key->ipv6.nd.tll,
    				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
    			}
    
    			icmp_len -= opt_len;
    			offset += opt_len;
    		}
    	}
    
    
    	return 0;
    
    
    invalid:
    	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
    	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
    	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
    
    
    	return 0;
    
    }
    
    /**
     * ovs_flow_extract - extracts a flow key from an Ethernet frame.
     * @skb: sk_buff that contains the frame, with skb->data pointing to the
     * Ethernet header
     * @in_port: port number on which @skb was received.
     * @key: output flow key
     *
     * The caller must ensure that skb->len >= ETH_HLEN.
     *
     * Returns 0 if successful, otherwise a negative errno value.
     *
     * Initializes @skb header pointers as follows:
     *
     *    - skb->mac_header: the Ethernet header.
     *
     *    - skb->network_header: just past the Ethernet header, or just past the
     *      VLAN header, to the first byte of the Ethernet payload.
     *
    
     *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
    
     *      on output, then just past the IP header, if one is present and
     *      of a correct length, otherwise the same as skb->network_header.
    
     *      For other key->eth.type values it is left untouched.
    
    int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
    
    	int error;
    
    	struct ethhdr *eth;
    
    	memset(key, 0, sizeof(*key));
    
    	key->phy.priority = skb->priority;
    
    	if (OVS_CB(skb)->tun_key)
    		memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
    
    	key->phy.in_port = in_port;
    
    	key->phy.skb_mark = skb->mark;
    
    
    	skb_reset_mac_header(skb);
    
    	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
    	 * header in the linear data area.
    	 */
    	eth = eth_hdr(skb);
    	memcpy(key->eth.src, eth->h_source, ETH_ALEN);
    	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
    
    	__skb_pull(skb, 2 * ETH_ALEN);
    
    	/* We are going to push all headers that we pull, so no need to
    	 * update skb->csum here.
    	 */
    
    
    	if (vlan_tx_tag_present(skb))
    		key->eth.tci = htons(skb->vlan_tci);
    	else if (eth->h_proto == htons(ETH_P_8021Q))
    		if (unlikely(parse_vlan(skb, key)))
    			return -ENOMEM;
    
    	key->eth.type = parse_ethertype(skb);
    	if (unlikely(key->eth.type == htons(0)))
    		return -ENOMEM;
    
    	skb_reset_network_header(skb);
    	__skb_push(skb, skb->data - skb_mac_header(skb));
    
    	/* Network layer. */
    	if (key->eth.type == htons(ETH_P_IP)) {
    		struct iphdr *nh;
    		__be16 offset;
    
    		error = check_iphdr(skb);
    		if (unlikely(error)) {
    			if (error == -EINVAL) {
    				skb->transport_header = skb->network_header;
    				error = 0;
    			}
    
    			return error;
    
    		}
    
    		nh = ip_hdr(skb);
    		key->ipv4.addr.src = nh->saddr;
    		key->ipv4.addr.dst = nh->daddr;
    
    		key->ip.proto = nh->protocol;
    		key->ip.tos = nh->tos;
    		key->ip.ttl = nh->ttl;
    
    		offset = nh->frag_off & htons(IP_OFFSET);
    		if (offset) {
    			key->ip.frag = OVS_FRAG_TYPE_LATER;
    
    			return 0;
    
    		}
    		if (nh->frag_off & htons(IP_MF) ||
    			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    
    		/* Transport layer. */
    		if (key->ip.proto == IPPROTO_TCP) {
    			if (tcphdr_ok(skb)) {
    				struct tcphdr *tcp = tcp_hdr(skb);
    				key->ipv4.tp.src = tcp->source;
    				key->ipv4.tp.dst = tcp->dest;
    			}
    		} else if (key->ip.proto == IPPROTO_UDP) {
    			if (udphdr_ok(skb)) {
    				struct udphdr *udp = udp_hdr(skb);
    				key->ipv4.tp.src = udp->source;
    				key->ipv4.tp.dst = udp->dest;
    			}
    
    		} else if (key->ip.proto == IPPROTO_SCTP) {
    			if (sctphdr_ok(skb)) {
    				struct sctphdr *sctp = sctp_hdr(skb);
    				key->ipv4.tp.src = sctp->source;
    				key->ipv4.tp.dst = sctp->dest;
    			}
    
    		} else if (key->ip.proto == IPPROTO_ICMP) {
    			if (icmphdr_ok(skb)) {
    				struct icmphdr *icmp = icmp_hdr(skb);
    				/* The ICMP type and code fields use the 16-bit
    				 * transport port fields, so we need to store
    				 * them in 16-bit network byte order. */
    				key->ipv4.tp.src = htons(icmp->type);
    				key->ipv4.tp.dst = htons(icmp->code);
    			}
    		}
    
    
    	} else if ((key->eth.type == htons(ETH_P_ARP) ||
    		   key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
    
    		struct arp_eth_header *arp;
    
    		arp = (struct arp_eth_header *)skb_network_header(skb);
    
    		if (arp->ar_hrd == htons(ARPHRD_ETHER)
    				&& arp->ar_pro == htons(ETH_P_IP)
    				&& arp->ar_hln == ETH_ALEN
    				&& arp->ar_pln == 4) {
    
    			/* We only match on the lower 8 bits of the opcode. */
    			if (ntohs(arp->ar_op) <= 0xff)
    				key->ip.proto = ntohs(arp->ar_op);
    
    			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
    			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
    			memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
    			memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
    
    		}
    	} else if (key->eth.type == htons(ETH_P_IPV6)) {
    		int nh_len;             /* IPv6 Header + Extensions */
    
    
    		nh_len = parse_ipv6hdr(skb, key);
    
    		if (unlikely(nh_len < 0)) {
    
    			if (nh_len == -EINVAL) {
    
    				skb->transport_header = skb->network_header;
    
    				error = 0;
    			} else {
    
    				error = nh_len;
    
    			}
    			return error;
    
    		}
    
    		if (key->ip.frag == OVS_FRAG_TYPE_LATER)
    
    			return 0;
    
    		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
    			key->ip.frag = OVS_FRAG_TYPE_FIRST;
    
    		/* Transport layer. */
    		if (key->ip.proto == NEXTHDR_TCP) {
    			if (tcphdr_ok(skb)) {
    				struct tcphdr *tcp = tcp_hdr(skb);
    				key->ipv6.tp.src = tcp->source;
    				key->ipv6.tp.dst = tcp->dest;
    			}
    		} else if (key->ip.proto == NEXTHDR_UDP) {
    			if (udphdr_ok(skb)) {
    				struct udphdr *udp = udp_hdr(skb);
    				key->ipv6.tp.src = udp->source;
    				key->ipv6.tp.dst = udp->dest;
    			}
    
    		} else if (key->ip.proto == NEXTHDR_SCTP) {
    			if (sctphdr_ok(skb)) {
    				struct sctphdr *sctp = sctp_hdr(skb);
    				key->ipv6.tp.src = sctp->source;
    				key->ipv6.tp.dst = sctp->dest;
    			}
    
    		} else if (key->ip.proto == NEXTHDR_ICMP) {
    			if (icmp6hdr_ok(skb)) {
    
    				error = parse_icmpv6(skb, key, nh_len);
    				if (error)
    					return error;