Skip to content
Snippets Groups Projects
sched_fair.c 110 KiB
Newer Older
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
#include <linux/latencytop.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
 * NOTE: this latency value is not the same as the concept of
Ingo Molnar's avatar
Ingo Molnar committed
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
Ingo Molnar's avatar
Ingo Molnar committed
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
static unsigned int sched_nr_latency = 8;
 * After fork, child runs first. If set to 0 (default) then
 * parent will (try to) run first.
unsigned int sysctl_sched_child_runs_first __read_mostly;

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

static const struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED
/* cpu runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}

#define entity_is_task(se)	1

#define for_each_sched_entity(se) \
		for (; se; se = NULL)
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
	return &task_rq(p)->cfs;
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
	return se->vruntime - cfs_rq->min_vruntime;
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (!cfs_rq->curr)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
/*
 * Enqueue an entity into the rb-tree:
 */
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	s64 key = entity_key(cfs_rq, se);
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
		if (key < entity_key(cfs_rq, entry)) {
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
		cfs_rq->rb_leftmost = &se->run_node;

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra's avatar
Peter Zijlstra committed
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
	if (!last)
		return NULL;

	return rb_entry(last, struct sched_entity, run_node);
/**************************************************************
 * Scheduling class statistics methods:
 */

int sched_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	int factor = get_update_sysctl_factor();

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

 * delta /= w
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency = sched_nr_latency;

	if (unlikely(nr_running > nr_latency)) {
		period = sysctl_sched_min_granularity;
		period *= nr_running;
	}

	return period;
}

/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
 * s = p*P[w/rw]
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Mike Galbraith's avatar
Mike Galbraith committed
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Mike Galbraith's avatar
Mike Galbraith committed
	for_each_sched_entity(se) {
Lin Ming's avatar
Lin Ming committed
		struct load_weight *load;
Lin Ming's avatar
Lin Ming committed

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
Mike Galbraith's avatar
Mike Galbraith committed
		if (unlikely(!se->on_rq)) {
Mike Galbraith's avatar
Mike Galbraith committed

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
 * We calculate the vruntime slice of a to be inserted task
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra's avatar
Peter Zijlstra committed
{
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
static void update_cfs_shares(struct cfs_rq *cfs_rq);
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
Ingo Molnar's avatar
Ingo Molnar committed
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
	unsigned long delta_exec_weighted;
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
	curr->vruntime += delta_exec_weighted;
	update_min_vruntime(cfs_rq);
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
static void update_curr(struct cfs_rq *cfs_rq)
	struct sched_entity *curr = cfs_rq->curr;
	u64 now = rq_of(cfs_rq)->clock_task;
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
Ingo Molnar's avatar
Ingo Molnar committed
	delta_exec = (unsigned long)(now - curr->exec_start);
	if (!delta_exec)
		return;
Ingo Molnar's avatar
Ingo Molnar committed
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
		cpuacct_charge(curtask, delta_exec);
		account_group_exec_runtime(curtask, delta_exec);
}

static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
}

/*
 * Task is being enqueued - update stats:
 */
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_start(cfs_rq, se);
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
	schedstat_set(se->statistics.wait_start, 0);
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
	if (se != cfs_rq->curr)
		update_stats_wait_end(cfs_rq, se);
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	/*
	 * We are starting a new run period:
	 */
	se->exec_start = rq_of(cfs_rq)->clock_task;
}

/**************************************************
 * Scheduling class queueing methods:
 */

#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se)) {
		add_cfs_task_weight(cfs_rq, se->load.weight);
		list_add(&se->group_node, &cfs_rq->tasks);
	}
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
	if (entity_is_task(se)) {
		add_cfs_task_weight(cfs_rq, -se->load.weight);
		list_del_init(&se->group_node);
	}
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
	u64 period = sysctl_sched_shares_window;
	u64 now, delta;
	unsigned long load = cfs_rq->load.weight;
	if (cfs_rq->tg == &root_task_group)
	delta = now - cfs_rq->load_stamp;

	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
		delta = period - 1;
	cfs_rq->load_stamp = now;
	cfs_rq->load_unacc_exec_time = 0;
	cfs_rq->load_period += delta;
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
	load = cfs_rq->load.weight;

	load_weight = atomic_read(&tg->load_weight);
	load_weight += load;
	load_weight -= cfs_rq->load_contribution;

	shares = (tg->shares * load);
	if (load_weight)
		shares /= load_weight;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
		update_cfs_shares(cfs_rq);
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

static void update_cfs_shares(struct cfs_rq *cfs_rq)
{
	struct task_group *tg;
	struct sched_entity *se;

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
	if (!se)
		return;
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
	shares = calc_cfs_shares(cfs_rq, tg);

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHEDSTATS
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;
			if (tsk->in_iowait) {
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
				trace_sched_stat_iowait(tsk, delta);
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar's avatar
Ingo Molnar committed
		}
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
	u64 vruntime = cfs_rq->min_vruntime;
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
	if (initial && sched_feat(START_DEBIT))
		vruntime += sched_vslice(cfs_rq, se);
	/* sleeps up to a single latency don't count. */
	if (!initial) {
		unsigned long thresh = sysctl_sched_latency;
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

Peter Zijlstra's avatar
Peter Zijlstra committed
	se->vruntime = vruntime;
static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
		se->vruntime += cfs_rq->min_vruntime;

	 * Update run-time statistics of the 'current'.
	update_cfs_load(cfs_rq, 0);
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
	if (flags & ENQUEUE_WAKEUP) {
		place_entity(cfs_rq, se, 0);
		enqueue_sleeper(cfs_rq, se);
	update_stats_enqueue(cfs_rq, se);
	check_spread(cfs_rq, se);
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
	se->on_rq = 1;

	if (cfs_rq->nr_running == 1)
		list_add_leaf_cfs_rq(cfs_rq);
static void __clear_buddies_last(struct sched_entity *se)
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}